Environmental Protection (Water and Wetland Biodiversity) Policy 2019

# Barron River Basin Environmental Values and Water Quality Objectives 

Basin 110 and adjacent coastal waters

Prepared by: Environmental Policy and Planning Division, Department of Environment and Science
© State of Queensland, 2020.
The Queensland Government supports and encourages the dissemination and exchange of its information. The copyright in this publication is licensed under a Creative Commons Attribution 4.0 Australia (CC BY) licence.

## CC

Under this licence you are free, without having to seek our permission, to use this publication in accordance with the licence terms.
You must keep intact the copyright notice and attribute the State of Queensland as the source of the publication.
For more information on this licence, visit http://creativecommons.org/licenses/by/4.0/au/deed.en

If you need to access this document in a language other than English, please call the Translating and Interpreting Service (TIS National) on 131450 and ask them to telephone Library Services on +61731705470.

This publication can be made available in an alternative format (e.g. large print or audiotape) on request for people with vision impairment; phone +61731705470 or email [library@des.qld.gov.au](mailto:library@des.qld.gov.au).

October 2020

## Addendum Contents

1 Introduction ..... 3
2 Amendments ..... 4
3 Water quality objectives for human use environmental values ..... 15
3.1 Human use EVs water quality objectives ..... 15
3.2 Drinking water EV water quality objectives ..... 18
3.3 Aquaculture EV water quality objectives ..... 19
3.4 Irrigation EV water quality objectives ..... 22
3.5 Stock watering EV water quality objectives ..... 24
3.6 Recreation EV water quality objectives - cyanobacteria ..... 26
Addendum Tables
Table 1 Summary of amendments .....  3
Table 2a Aquatic ecosystem water quality objectives: coastal and marine waters .....
Table 2b Water quality objectives for major ions in Barron River Basin surface waters ..... 14
Table 3 Human use EVs water quality objectives ..... 15
Table 4 Drinking water EV: Priority water quality objectives for drinking water supply in the vicinity of off-takes, including groundwater, before treatment ..... 18
Table 5 Aquaculture EV: General water quality objectives for tropical aquaculture ..... 19
Table 6 Aquaculture EV: Water quality objectives for optimal growth of particular freshwater species ..... 20
Table 7 Aquaculture EV: Water quality objectives for optimal growth of particular marine species ..... 21
Table 8 Irrigation EV: Water quality objectives for thermotolerant (faecal) coliforms in irrigation waters used for food and non-food crops ${ }^{1}$ ..... 22
Table 9 Irrigation EV: Water quality objectives for heavy metals and metalloids in agricultural irrigation water- soil cumulative contamination loading limit (CCL), long-term trigger value (LTV) and short-term trigger value (STV) ${ }^{1}$... 23
Table 10 Stock watering EV: Water quality objectives for tolerances of livestock to salinity, as total dissolved solids, in drinking water ${ }^{1}$ ..... 24
Table 11 Stock watering EV: Water quality objectives (low risk trigger values) for heavy metals and metalloids in livestock drinking water ..... 25
Table 12 Recreational waters: Alert levels and corresponding actions for management of cyanobacteria ..... 26

## October 2020 Amendments: Barron River Basin

## 1 Introduction

This amendment document (October 2020) is made pursuant to the Environmental Protection (Water and Wetland Biodiversity) Policy 2019, and applies to all Wet Tropics schedule 1 documents, scheduled in 2014.

Section 13 (2) (b) of the EPP (Water and Wetland Biodiversity), and section 1.6 (Matters for amendment) of the respective schedule documents outline permissible amendment types. These include changes to water quality objectives (WQOs); changes to water type boundaries/descriptions; updates to information/data sources, websites and email contact details, agency/departmental names, other institutional names, references.

Table 1 summarises the 2020 amendments. Tables 2 a and 2 b provide updated aquatic ecosystem WQOs. Section 3 provides updated human use WQOs. Aside from the changes below, the content from 2014 remains applicable.

Table 1 Summary of amendments

| 2014 content | 2020 amended content |
| :---: | :---: |
| Table 2.1 Water quality objectives for physico-chemical, nutrient, algal and water clarity indicators to protect the aquatic ecosystems EVs under baseflow conditions (Coastal, Midshelf and Offshore Waters only) | Table 2a Aquatic ecosystem water quality objectives: coastal and marine waters, replaces Table 2.1 for coastal and marine waters. |
| Table 2.3 Water quality objectives for specific pesticides and biocides to protect aquatic ecosystem EVs | ANZG, 2018, replaces Table 2.3 |
| Table 2.4 Water quality objectives for other ions, metals and chemical indicators in surface waters | Barron River Basin schedule document only: Table 2b Water quality objectives for major ions in Barron River Basin surface waters, replaces Table 2.4 |
| AWQG or ANZECC guidelines <br> Australian and New Zealand Guidelines for Fresh and Marine Water Quality (October 2000) | Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG, 2018), as amended. |
| Monitoring and Sampling Manual 2009 | Monitoring and Sampling Manual 2018, as amended. Published on the department's website. |
| All legislative references | Refer to the latest version under the Acts Interpretation Act, 1954, as amended |
| Wet Tropics Coastal waters plan WQ1082 | Revised coastal waters plan WQ1082 (available from the department's website) |
| Section 3.3 Water quality objectives for human use environmental values (including tables 3.1-3.10) | Section 3 Water quality objectives for human use environmental values (including tables 3-12) |

## 2 Amendments

## WET TROPICS COASTAL WATERS - AQUATIC ECOSYSTEM WQOs AMENDMENTS 2020

Applying to enclosed coastal, open coastal, midshelf and offshore marine waters of all Wet Tropics basins. Refer accompanying plan, WQ1082.
Table 2a Aquatic ecosystem water quality objectives: coastal and marine waters

| Water area/type <br> (Source: s1-s6) <br> (refer plan WQ1082) | Management intent /Level of protection | WET TROPICS - COASTAL AND MARINE WATERS (refer plan WQ1082) <br> Aquatic Ecosystem water quality objectives ${ }^{1-7}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Note: WQGs for indicators are shown as a range of $20^{\text {th }}, 50^{\text {th }}$ and $80^{\text {th }}$ percentiles to be maintained or achieved (e.g. $3-4-5$ ), lower and upper limits (e.g. pH: 7.2-8.2), or as a single value (e.g. <15). For single value WQOs, medians (or means where specified) of test data are compared against the WQO (refer to 'Note 7: comparison of test data with WQOs' for more details). <br> HEV - high ecological value; SD - slightly disturbed; MD - moderately disturbed. Refer to accompanying plans for details; ID - insufficient data <br> Sources: S1: Local datasets/reporting; S2: QWQG guidelines and /or data; S3: GBRMPA (2010) WQG; S4: GBRMPA analysis of Marine Monitoring Program and/or AIMS Long Term Monitoring Program datasets; S5: ANZG (2018); S6: CSIRO aluminium studies (Golding et al., 2015) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | $\begin{gathered} \text { Amm } \mathbf{N}^{1} \\ (\mu \mathrm{~g} / \mathrm{L}) \end{gathered}$ | Oxid $\mathbf{N}^{1}$ <br> ( $\mu \mathrm{g} / \mathrm{L}$ ) | Partic $\mathbf{N}^{5}$ ( $\mu \mathrm{g} / \mathrm{L}$ ) | Total Diss $\mathbf{N}$ ( $\mu \mathrm{g} / \mathrm{L}$ ) | Total $\mathbf{N}$ ( $\mu \mathrm{g} / \mathrm{L}$ ) | $\begin{aligned} & \text { FRP } \\ & (\mu \mathrm{g} / \mathrm{L}) \end{aligned}$ | Partic $\mathbf{P}^{5}$ ( $\mu \mathrm{g} / \mathrm{L}$ ) | $\begin{array}{\|c} \text { Total Diss } \\ \mathbf{P} \\ (\mu \mathrm{g} / \mathrm{L}) \end{array}$ | Total $\mathbf{P}$ ( $\mu \mathrm{g} / \mathrm{L}$ ) | $\begin{aligned} & \text { Chl- } \mathrm{a}^{5} \\ & (\mu \mathrm{~L} / \mathrm{L}) \end{aligned}$ | Silicate ( $\mu \mathrm{g} / \mathrm{L}$ ) | $\begin{gathered} \text { DO }^{3} \\ \text { (\% sat) } \end{gathered}$ | Turb (NTU) | Secchi <br> (m) | $\begin{gathered} \mathbf{S S}^{2,5} \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$ | pH |
| WET TROPICS ENCLOSED COASTAL/LOWER ESTUARY WATERS - All WET TROPICS BASINS |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| WET TROPICS <br> HEV and SD enclosed coastal/ lower estuary waters HEV3001, HEV3041, HEV3061, HEV3081, HEV3121 | HEV | $\begin{gathered} 7-10-15 \\ (\mathrm{~s} 2) \end{gathered}$ | $\begin{gathered} 2-3-10 \\ (\mathrm{~s} 2) \end{gathered}$ | ID | na | $\begin{gathered} 95-115-160 \\ \text { (s2) } \end{gathered}$ | $\begin{gathered} 2-3-5 \\ (\mathrm{~s} 2) \end{gathered}$ | ID | na | $\left\|\begin{array}{c} 9-13-20 \\ (\mathrm{~s} 2) \end{array}\right\|$ | $\begin{gathered} 0.7-1.1-2.0 \\ \text { (s2) } \end{gathered}$ | na | $\begin{gathered} 85-105 \\ \text { (s2) } \end{gathered}$ | $\begin{gathered} 1-4-10 \\ (\mathrm{~s} 2) \end{gathered}$ | $\left\|\begin{array}{c} 1-1.6-2.2 \\ (\mathrm{~s} 2) \end{array}\right\|$ | ID | $\begin{gathered} 7.5-8.4 \\ (\mathrm{~s} 2) \end{gathered}$ |
| WET TROPICS <br> MD enclosed coastal/ lower estuary waters not identified as HEV or SD (s2) | MD | $\begin{aligned} & <15 \\ & \text { (s2) } \end{aligned}$ | $\begin{aligned} & <10 \\ & (\mathrm{~s} 2) \end{aligned}$ | ID | na | $\begin{aligned} & <160 \\ & (s 2) \end{aligned}$ | $\begin{gathered} <5 \\ \text { (s2) } \end{gathered}$ | ID | na | $\begin{aligned} & <20 \\ & (\mathrm{~s} 2) \end{aligned}$ | $\begin{gathered} <2 \\ \text { (s2) } \end{gathered}$ | na | $\begin{gathered} 85-105 \\ \text { (s2) } \end{gathered}$ | $\begin{aligned} & <10 \\ & (\mathrm{~s} 2) \end{aligned}$ | $\begin{gathered} >1 \\ (\mathrm{~s} 2) \end{gathered}$ | ID | $\begin{aligned} & 7.5-8.4 \\ & \text { (s2) } \end{aligned}$ |


| Water area/type <br> (Source: s1-s6) <br> (refer plan WQ1082) | Management intent /Level of protection | WET TROPICS - COASTAL AND MARINE WATERS (refer plan WQ1082) <br> Aquatic Ecosystem water quality objectives ${ }^{1-7}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Note: WQGs for indicators are shown as a range of $20^{\text {th }}, 50^{\text {th }}$ and $80^{\text {th }}$ percentiles to be maintained or achieved (e.g. $3-4-5$ ), lower and upper limits (e.g. pH : $7.2-8.2$ ), or as a single value (e.g. $<15$ ). For single value WQOs, medians (or means where specified) of test data are compared against the WQO (refer to 'Note 7: comparison of test data with WQOs' for more details). <br> HEV - high ecological value; SD - slightly disturbed; MD - moderately disturbed. Refer to accompanying plans for details; ID - insufficient data <br> Sources: S1: Local datasets/reporting; S2: QWQG guidelines and /or data; S3: GBRMPA (2010) WQG; S4: GBRMPA analysis of Marine Monitoring Program and/or AIMS Long Term Monitoring Program datasets; S5: ANZG (2018); S6: CSIRO aluminium studies (Golding et al., 2015) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | $\begin{gathered} \mathbf{A m m} \mathbf{N}^{1} \\ (\mu \mathrm{~g} / \mathrm{L}) \end{gathered}$ | $\begin{gathered} \text { Oxid } \mathbf{N}^{1} \\ (\mu \mathrm{~g} / \mathrm{L}) \end{gathered}$ | Partic $\mathbf{N}^{5}$ $(\mu \mathrm{g} / \mathrm{L})$ | Total Diss $\mathbf{N}$ $(\mu \mathrm{g} / \mathrm{L})$ | Total $\mathbf{N}$ ( $\mu \mathrm{g} / \mathrm{L}$ ) | $\begin{gathered} \text { FRP } \\ (\mu \mathrm{g} / \mathrm{L}) \end{gathered}$ | Partic $\mathrm{P}^{5}$ ( $\mu \mathrm{g} / \mathrm{L}$ ) | $\begin{array}{\|c\|} \hline \text { Total Diss } \\ \mathbf{P} \\ (\mu \mathrm{g} / \mathrm{L}) \end{array}$ | Total $\mathbf{P}$ ( $\mu \mathrm{g} / \mathrm{L}$ ) | $\begin{aligned} & \text { Chl- } a^{5} \\ & (\mu \mathrm{~g} / \mathrm{L}) \end{aligned}$ | Silicate $(\mu \mathrm{g} / \mathrm{L})$ | $\begin{gathered} \text { DO³ }^{2} \\ \text { (\% sat) } \end{gathered}$ | $\begin{aligned} & \text { Turb } \\ & \text { (NTU) } \end{aligned}$ | Secchi <br> (m) | $\begin{gathered} \mathbf{S S}^{2,5} \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$ | pH |

WET TROPICS OPEN COASTAL WATERS - ALL BASINS EXCEPT HERBERT RIVER BASIN (refer separate row below)

| WET TROPICS <br> HEV and SD open coastal waters HEV3121, SD3121 <br> (EXCLUDES Herbert Palm Island Group) (s2, s3, s4) | HEV | $\begin{gathered} \leq 2 \\ (\mathrm{~s} 4) \end{gathered}$ | $\left\lvert\, \begin{gathered} 0.07-0.35-1.15 \\ (\mathrm{~s} 4) \end{gathered}\right.$ | $\begin{gathered} \leq 20 \\ (\text { ann. mean) } \\ \text { Dry: } \leq 16 \\ \text { (May-Oct) } \\ \text { Wet: } \leq 25 \\ \text { (Nov-Apr) } \\ \text { (s3, s4) } \end{gathered}$ | $\begin{gathered} 50-80-100 \\ (\mathrm{~s} 4) \end{gathered}$ | $\begin{gathered} 65-100-125 \\ \text { (s4) } \end{gathered}$ | $\begin{gathered} 0-2-3 \\ (\mathrm{~s} 4) \end{gathered}$ | $\leq 2.8$ (ann. mean) Dry: $\leq 2.3$ (May-Oct) Wet: $\leq 3.3$ (Nov-Apr) (s3, $s 4$ ) | 3-6-10 <br> (s4) | $\left\lvert\, \begin{gathered} 5-11-20 \\ (\mathrm{~s} 4) \end{gathered}\right.$ | $\leq 0.45$ <br> (ann. mean) <br> Dry: $\leq 0.32$ <br> (May-Oct) <br> Wet: $\leq 0.63$ <br> (Nov-Apr) <br> ( $s 3, \mathrm{~s} 4$ ) | $\begin{gathered} 90-165- \\ 260 \\ (\mathrm{~s} 4) \end{gathered}$ | $\begin{gathered} 95-105 \\ (\mathrm{~s} 2) \end{gathered}$ | $\begin{gathered} 0.6-0.9-1.8 \\ (\mathrm{~s} 3, \mathrm{~s} 4) \end{gathered}$ | $\begin{gathered} \geq 10 \\ \text { (ann. } \\ \text { mean) } \\ \text { (s3) } \end{gathered}$ | $\leq 2$ (ann. mean) Dry: $\leq 1.6$ (May-Oct) Wet: $\leq 2.4$ (Nov-Apr) (s3, s4) | $\begin{gathered} 8.1-8.4 \\ \text { (s2) } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| WET TROPICS <br> Open coastal waters not identified as HEV or SD <br> (EXCLUDES Herbert Palm Island Group) (s2, s3, s4) | SMD <br> mapped as MD | $\begin{gathered} \leq 2 \\ (\mathrm{~s} 4) \end{gathered}$ | $\begin{gathered} \leq 0.35 \\ (\mathrm{~s} 4) \end{gathered}$ | $\begin{gathered} \hline \leq 20 \\ (\text { ann. mean) } \\ \text { Dry: } \leq 16 \\ \text { (May-Oct) } \\ \text { Wet: } \leq 25 \\ \text { (Nov-Apr) } \\ \text { (s3, s4) } \\ \hline \end{gathered}$ | $\begin{aligned} & \leq 80 \\ & (s 4) \end{aligned}$ | $\begin{gathered} \leq 100 \\ (s 4) \end{gathered}$ | $\begin{gathered} \leq 2 \\ \text { (s4) } \end{gathered}$ | $\leq 2.8$ <br> (ann. mean) <br> Dry: $\leq 2.3$ <br> (May-Oct) <br> Wet: $\leq 3.3$ <br> (Nov-Apr) <br> ( $\mathrm{s} 3, \mathrm{~s} 4$ ) | $\begin{gathered} \leq 6 \\ \text { (s4) } \end{gathered}$ | $\begin{aligned} & \leq 11 \\ & (\mathrm{~s} 4) \end{aligned}$ | $\begin{gathered} \leq 0.45 \\ \text { (ann. mean) } \\ \text { Dry: } \leq 0.32 \\ \text { (May-Oct) } \\ \text { Wet: } \leq 0.63 \\ \text { (Nov-Apr) } \\ \text { (s3, s4) } \\ \hline \end{gathered}$ | $\begin{gathered} \geq 165 \\ \text { (s4) } \end{gathered}$ | $\begin{gathered} 95-105 \\ (\mathrm{~s} 2) \end{gathered}$ | $\begin{gathered} \leq 1 \\ (\mathrm{~s} 3, \mathrm{~s} 4) \end{gathered}$ | $\begin{gathered} \geq 10 \\ \text { (ann. } \\ \text { mean) } \\ \text { (s3) } \end{gathered}$ | $\leq 2$ <br> (ann. mean) <br> Dry: $\leq 1.6$ <br> (May-Oct) <br> Wet: $\leq 2.4$ <br> (Nov-Apr) <br> (s3, s4) | $\begin{gathered} 8.1-8.4 \\ \text { (s2) } \end{gathered}$ |

WET TROPICS OPEN COASTAL WATERS - HERBERT RIVER BASIN (Palm Island Group)


| Water area/type <br> (Source: s1-s6) <br> (refer plan WQ1082) | Management intent /Level of protection | WET TROPICS - COASTAL AND MARINE WATERS <br> (refer plan WQ1082) <br> Aquatic Ecosystem water quality objectives ${ }^{1-7}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Note: WQGs for indicators are shown as a range of $20^{\text {th }}, 50^{\text {th }}$ and $80^{\text {th }}$ percentiles to be maintained or achieved (e.g. 3-4-5), lower and upper limits (e.g. pH: 7.2-8.2), or as a single value (e.g. <15). For single value WQOs, medians (or means where specified) of test data are compared against the WQO (refer to 'Note 7: comparison of test data with WQOs' for more details). <br> HEV - high ecological value; SD - slightly disturbed; MD - moderately disturbed. Refer to accompanying plans for details; ID - insufficient data <br> Sources: S1: Local datasets/reporting; S2: QWQG guidelines and /or data; S3: GBRMPA (2010) WQG; S4: GBRMPA analysis of Marine Monitoring Program and/or AIMS Long Term Monitoring Program datasets; S5: ANZG (2018); S6: CSIRO aluminium studies (Golding et al., 2015) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | $\begin{gathered} \left.\operatorname{Amm~N}_{(\mu \mathrm{N}} \mathbf{N}^{1}\right) \end{gathered}$ | $\begin{gathered} \text { Oxid } \mathbf{N}^{1} \\ (\mu \mathrm{~g} / \mathrm{L}) \end{gathered}$ | Partic ${ }^{5}$ ( $\mu \mathrm{g} / \mathrm{L}$ ) | Total Diss N ( $\mu \mathrm{g} / \mathrm{L}$ ) | Total $\mathbf{N}$ ( $\mu \mathrm{g} / \mathrm{L}$ ) | $\begin{gathered} \text { FRP } \\ (\mu \mathrm{g} / \mathrm{L}) \end{gathered}$ | Partic $\mathrm{P}^{5}$ ( $\mu \mathrm{g} / \mathrm{L}$ ) | $\begin{array}{\|c\|} \hline \text { Total Diss } \\ \mathbf{P} \\ (\mu \mathrm{g} / \mathrm{L}) \end{array}$ | $\begin{gathered} \text { Total P } \\ (\mu \mathrm{g} / \mathrm{L}) \end{gathered}$ | $\begin{aligned} & \text { Chl- } \mathrm{a}^{5} \\ & (\mu \mathrm{~g} / \mathrm{L}) \end{aligned}$ | Silicate <br> ( $\mu \mathrm{g} / \mathrm{L}$ ) | $\begin{gathered} \text { DO³}^{2} \\ (\% \text { sat }) \end{gathered}$ | Turb (NTU) | Secchi (m) | $\begin{gathered} \mathbf{S S}^{2,5} \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$ | pH |
| HERBERT - PALM ISLAND GROUP <br> Open coastal waters not identified as HEV or SD (s2, s3, s4) | SMD mapped as MD | $\begin{gathered} \leq 3 \\ (s 4) \end{gathered}$ | $\begin{gathered} \leq 0.28 \\ (\mathrm{~s} 4) \end{gathered}$ | $\begin{gathered} \leq 20 \\ (\text { ann. mean) } \\ \text { Dry: } \leq 16 \\ \text { (May-Oct) } \\ \text { Wet: } \leq 25 \\ \text { (Nov-Apr) } \\ (\mathrm{s} 3, \mathrm{~s} 4) \end{gathered}$ | $\begin{aligned} & \leq 75 \\ & (\mathrm{~s} 4) \end{aligned}$ | $\begin{gathered} \leq 100 \\ \text { (s4) } \end{gathered}$ | $\begin{gathered} \leq 2 \\ (\mathrm{~s} 4) \end{gathered}$ | $\begin{gathered} \leq 2.8 \\ \text { (ann. mean) } \\ \text { Dry: } \leq 2.3 \\ \text { (May-Oct) } \\ \text { Wet: } \leq 3.3 \\ \text { (Nov-Apr) } \\ \text { (s3, s4) } \end{gathered}$ | $\begin{gathered} \leq 6 \\ (\mathrm{~s} 4) \end{gathered}$ | $\begin{aligned} & \leq 11 \\ & \text { (s4) } \end{aligned}$ | $\begin{gathered} \leq 0.45 \\ \text { (ann. mean) } \\ \text { Dry: } \leq 0.32 \\ \text { (May-Oct) } \\ \text { Wet: } \leq 0.63 \\ \text { (Nov-Apr) } \\ \text { (s3) } \end{gathered}$ | $\begin{gathered} \geq 165 \\ \text { (s4) } \end{gathered}$ | $\begin{aligned} & 95-105 \\ & \text { (s2) } \end{aligned}$ | $\begin{gathered} \leq 1 \\ (\mathrm{~s} 3, \mathrm{~s} 4) \end{gathered}$ | $\geq 10$ <br> (ann. <br> mean) <br> (s3) | $\begin{gathered} \leq 2 \\ \text { (ann. mean) } \\ \text { Dry: } \leq 1.6 \\ \text { (May-Oct) } \\ \text { Wet: } \leq 2.4 \\ \text { (Nov-Apr) } \\ (\mathrm{s} 3, \mathrm{~s} 4) \end{gathered}$ | $\begin{aligned} & 8.1-8.4 \\ & \text { (s2) } \end{aligned}$ |

## WET TROPICS MIDSHELF WATERS - ALL WET TROPICS BASINS EXCEPT HERBERT RIVER BASIN (refer separate row below)

| WET TROPICS <br> HEV3121 midshelf waters <br> EXCLUDES Herbert Palm Island Group (s2, s3, s4) | HEV | $\begin{gathered} \leq 2 \\ (s 4) \end{gathered}$ | $\begin{gathered} 0.14-0.31-0.78 \\ \text { (s4) } \end{gathered}$ | 10-14-18 <br> Dry: $\leq 16$ <br> (May-Oct) <br> Wet: $\leq 25$ <br> (Nov-Apr) <br> ( $\mathrm{s} 3, \mathrm{~s} 4$ ) | $\begin{gathered} 60-80-105 \\ \text { (s4) } \end{gathered}$ | $\begin{aligned} & 75-100-130 \\ & \text { (s4) } \end{aligned}$ | $\begin{gathered} 0-2-3 \\ \text { (s4) } \end{gathered}$ | $\begin{gathered} 1.5-2.0-3.0 \\ \text { Dry: } \leq 2.3 \\ \text { (May-Oct) } \\ \text { Wet: } \leq 3.3 \\ \text { (Nov-Apr) } \\ \text { (s3, s4) } \end{gathered}$ | $\begin{gathered} 3-6-10 \\ \text { (s4) } \end{gathered}$ | 6-8-15 <br> (s4) | 0.2-0.3-0.46 <br> Dry: $\leq 0.32$ <br> (May-Oct) <br> Wet: $\leq 0.63$ <br> (Nov-Apr) <br> (s3, s4) | $\begin{gathered} 50-95- \\ 165 \\ \text { (s4) } \end{gathered}$ | $\begin{gathered} 95-105 \\ (\mathrm{~s} 2) \end{gathered}$ | $\begin{gathered} 0.4-0.6-0.8 \\ (\mathrm{~s} 3, \mathrm{~s} 4) \end{gathered}$ | 6-9-14 <br> (s4) | $\begin{gathered} 0.6-1.1-1.8 \\ \text { Dry: } \leq 1.6 \\ \text { (May-Oct) } \\ \text { Wet: } \leq 2.4 \\ \text { (Nov-Apr) } \\ \text { (s3, s4) } \end{gathered}$ | $\begin{gathered} 8.1-8.4 \\ \text { (s2) } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

WET TROPICS MIDSHELF WATERS - HERBERT RIVER BASIN (Palm Island Group)

| HERBERT PALM ISLAND GROUP <br> HEV3124 midshelf waters $(s 2, s 3, s 4)$ | HEV | $\begin{gathered} \leq 3 \\ \text { (s4) } \end{gathered}$ | $\begin{gathered} 0.14-0.31-2.08 \\ \text { (s4) } \end{gathered}$ | 10-14-20 <br> Dry: $\leq 16$ <br> (May-Oct) <br> Wet: $\leq 25$ <br> (Nov-Apr) $(\mathrm{s} 3, \mathrm{~s} 4)$ | 55-75-95 <br> (s4) | $\begin{gathered} 70-100-115 \\ \text { (s4) } \end{gathered}$ | $\begin{gathered} 0-1-4 \\ \text { (s4) } \end{gathered}$ | $\begin{gathered} 1.5-2.0-2.8 \\ \text { Dry: } \leq 2.3 \\ \text { (May-Oct) } \\ \text { Wet: } \leq 3.3 \\ \text { (Nov-Apr) } \\ (\mathrm{s} 3, \mathrm{~s} 4) \end{gathered}$ | $\begin{gathered} 3-6-10 \\ \text { (s4) } \end{gathered}$ | $\begin{gathered} 5-10-15 \\ \text { (s4) } \end{gathered}$ | $\begin{gathered} \hline 0.18-0.33- \\ 0.57 \\ \text { Dry: } \leq 0.32 \\ \text { (May-Oct) } \\ \text { Wet: } \leq 0.63 \\ \text { (Nov-Apr) } \\ (\mathrm{s} 3, \mathrm{~s} 4) \\ \hline \end{gathered}$ | $\begin{gathered} 40-85- \\ 150 \\ \text { (s4) } \end{gathered}$ | $\begin{gathered} 95-105 \\ (\mathrm{~s} 2) \end{gathered}$ | $\begin{gathered} 0.4-0.5-0.7 \\ (\mathrm{~s} 3, \mathrm{~s} 4) \end{gathered}$ | $\begin{gathered} 9-13-17 \\ (s 3, s 4) \end{gathered}$ | $\begin{gathered} 0.5-0.8-1.6 \\ \text { Dry: } \leq 1.6 \\ \text { (May-Oct) } \\ \text { Wet: } \leq 2.4 \\ \text { (Nov-Apr) } \\ (\mathrm{s} 3, \mathrm{~s} 4) \end{gathered}$ | $\begin{gathered} 8.1-8.4 \\ \text { (s2) } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |


| Water area/type <br> (Source: s1-s6) <br> (refer plan WQ1082) | Management intent /Level of protection | WET TROPICS - COASTAL AND MARINE WATERS (refer plan WQ1082) <br> Aquatic Ecosystem water quality objectives ${ }^{1-7}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Note: WQGs for indicators are shown as a range of $20^{\text {th }}, 50^{\text {th }}$ and $80^{\text {th }}$ percentiles to be maintained or achieved (e.g. $3-4-5$ ), lower and upper limits (e.g. pH: 7.2-8.2), or as a single value (e.g. <15). For single value WQOs, medians (or means where specified) of test data are compared against the WQO (refer to 'Note 7: comparison of test data with WQOs' for more details). <br> HEV - high ecological value; SD - slightly disturbed; MD - moderately disturbed. Refer to accompanying plans for details; ID - insufficient data <br> Sources: S1: Local datasets/reporting; S2: QWQG guidelines and /or data; S3: GBRMPA (2010) WQG; S4: GBRMPA analysis of Marine Monitoring Program and/or AIMS Long Term Monitoring Program datasets; S5: ANZG (2018); S6: CSIRO aluminium studies (Golding et al., 2015) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | $\underset{(\mu \mathrm{g} / \mathrm{L})}{\mathrm{Amm}} \mathrm{~N}^{1}$ | Oxid $\mathrm{N}^{1}$ ( $\mu \mathrm{g} / \mathrm{L}$ ) | Partic ${ }^{5}$ ( $\mu \mathrm{g} / \mathrm{L}$ ) | Total Diss N $(\mu \mathrm{g} / \mathrm{L})$ | Total N ( $\mu \mathrm{g} / \mathrm{L}$ ) | $\begin{gathered} \text { FRP } \\ (\mu \mathrm{g} / \mathrm{L}) \end{gathered}$ | Partic $\mathrm{P}^{5}$ <br> ( $\mu \mathrm{g} / \mathrm{L}$ ) | $\left\|\begin{array}{c} \text { Total Diss } \\ \mathbf{P} \\ (\mu \mathrm{g} / \mathrm{L}) \end{array}\right\|$ | Total $\mathbf{P}$ $(\mu \mathrm{g} / \mathrm{L})$ | $\begin{aligned} & \mathrm{Chl}-\mathrm{a}^{5} \\ & (\mu \mathrm{~L} / \mathrm{L}) \end{aligned}$ | Silicate ( $\mu \mathrm{g} / \mathrm{L}$ ) | $\begin{gathered} \mathrm{DO}^{3} \\ (\% \mathrm{sat}) \end{gathered}$ | $\begin{gathered} \text { Turb } \\ \text { (NTU) } \end{gathered}$ | $\begin{aligned} & \text { Secchi } \\ & (m) \end{aligned}$ | $\begin{gathered} \mathrm{SS}^{2,5} \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$ | pH |
| WET TROPICS OFFSHORE WATERS - ALL WET TROPICS BASINS |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| WET TROPICS <br> HEV3122 offshore waters (s2, s3, s4) | HEV | $\begin{gathered} \leq 2 \\ (s 4) \end{gathered}$ | $\begin{gathered} 0-0.6-2 \\ (\mathrm{~s} 4) \end{gathered}$ | 10-12-16 <br> Dry: $\leq 14$ <br> (May-Oct) <br> Wet: $\leq 20$ <br> (Nov-Apr) <br> ( $\mathrm{s} 3, \mathrm{~s} 4$ ) | $\begin{gathered} \text { 55-75-95 } \\ \text { (s4) } \end{gathered}$ | $\begin{aligned} & \text { 70-95-120 } \\ & \text { (s4) } \end{aligned}$ | $\begin{gathered} 0-2-3 \\ (\mathrm{~s} 4) \end{gathered}$ | 1.2-1.7-2.4 <br> Dry: $\leq 1.5$ <br> (May-Oct) <br> Wet: $\leq 2.3$ <br> (Nov-Apr) <br> ( $\mathrm{s} 3, \mathrm{~s} 4$ ) | $\begin{gathered} 2-5-8 \\ (54) \end{gathered}$ | $\begin{gathered} 4-6-9 \\ (\mathrm{~s}) \end{gathered}$ | 0.2-0.3-0.5 <br> Dry: $\leq 0.28$ <br> (May-Oct) <br> Wet: $\leq 0.56$ <br> (Nov-Apr) <br> ( $\mathrm{s} 3, \mathrm{~s} 4$ ) | $\begin{gathered} 25-50- \\ 100 \\ (54) \end{gathered}$ | $\begin{gathered} 95-105 \\ (\mathrm{~s} 2) \end{gathered}$ | $\begin{gathered} \leq 1 \\ (\mathrm{~s} 2,54) \end{gathered}$ | $\left\|\begin{array}{c} 13-18-23 \\ (53,54) \end{array}\right\|$ | 0.3-0.6-1.0 <br> Dry: $\leq 0.6$ <br> (May-Oct) <br> Wet: $\leq 0.8$ <br> (Nov-Apr) <br> ( $\mathrm{s} 3, \mathrm{~s} 4$ ) | $\begin{aligned} & 8.1-8.4 \\ & \text { (s2) } \end{aligned}$ |



## WET TROPICS COASTAL AND MARINE WATERS - TOXICANTS (INCLUDING METALS, BIOCIDES)

|  |  |
| :--- | :--- |
|  |  |
| Coastal (including lower estuary) <br> and marine waters outside <br> ports, marinas, spoil grounds: <br> toxicants (s1, $53,55,56$ ) |  |
|  |  |
|  |  |

- Toxicants (including metals, biocides) in water: refer to $99 \%$ species protection values contained in:
- ANZG (2018) toxicant default guideline values for water quality in aquatic ecosystems', as amended
- The following sources, where their guideline values post-date the specified ANZG guideline value, or where there is no ANZG value specified for a toxicant (Note: the ANZG specifies the date of guideline development for each toxicant)
- Biocides:

GBRMPA (2010) Water quality guidelines for the Great Barrier Reef Marine Park 2010

- King et al (2017, as amended) (vol 1 and 2) Proposed aquatic ecosystem protection guideline values for pesticides commonly used in the Great Barrier Reef catchment area (available from Queensland Government publications)
- Aluminium: $<2.1 \mu \mathrm{~g} / \mathrm{L}$ ( $99 \%$ species protection. Applies to the measured concentration in seawater that passes through a $0.45 \mu \mathrm{~m}$ filter) [Source: Golding et al. (2015)]
- Toxicants in sediments: refer to ANZG 'toxicant default guideline values for sediment quality'
- Ship-sourced pollutants (including sewage): Discharge of ship-sourced pollutants (including sewage) to be controlled in accordance with requirements of the Transport Operations (Marine Pollution) Act 1995 and Regulation 2018. (Refer to Maritime Services Queensland website for further information.)
- Anti-fouling: Comply with Anti-fouling and in-water cleaning guidelines (2015, as amended)

| Water area/type <br> (Source: s1-s6) <br> (refer plan WQ1082) | Management intent /Level of protection | WET TROPICS - COASTAL AND MARINE WATERS (refer plan WQ1082) <br> Aquatic Ecosystem water quality objectives ${ }^{1-7}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Note: WQGs for indicators are shown as a range of $20^{\text {th }}, 50^{\text {th }}$ and $80^{\text {th }}$ percentiles to be maintained or achieved (e.g. 3-4-5), lower and upper limits (e.g. pH: 7.2-8.2), or as a single value (e.g. <15). For single value WQOs, medians (or means where specified) of test data are compared against the WQO (refer to 'Note 7: comparison of test data with WQOs' for more details). <br> HEV - high ecological value; SD - slightly disturbed; MD - moderately disturbed. Refer to accompanying plans for details; ID - insufficient data <br> Sources: S1: Local datasets/reporting; S2: QWQG guidelines and /or data; S3: GBRMPA (2010) WQG; S4: GBRMPA analysis of Marine Monitoring Program and/or AIMS Long Term Monitoring Program datasets; S5: ANZG (2018); S6: CSIRO aluminium studies (Golding et al., 2015) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | Amm $\mathbf{N}^{1}$ <br> ( $\mu \mathrm{g} / \mathrm{L}$ ) | Oxid $\mathbf{N}^{1}$ $(\mu \mathrm{g} / \mathrm{L})$ | Partic $\mathbf{N}^{5}$ ( $\mu \mathrm{g} / \mathrm{L}$ ) | $\begin{gathered} \text { Total Diss N } \\ (\mu \mathrm{g} / \mathrm{L}) \end{gathered}$ | Total $\mathbf{N}$ ( $\mu \mathrm{g} / \mathrm{L}$ ) | $\begin{gathered} \text { FRP } \\ (\mu \mathrm{g} / \mathrm{L}) \end{gathered}$ | Partic $\mathbf{P}^{5}$ ( $\mu \mathrm{g} / \mathrm{L}$ ) | $\left\lvert\, \begin{gathered} \text { Total Diss } \\ \mathbf{P} \\ (\mu \mathrm{g} / \mathrm{L}) \end{gathered}\right.$ | Total $\mathbf{P}$ ( $\mu \mathrm{g} / \mathrm{L}$ ) | $\begin{aligned} & \text { Chl- } \mathrm{a}^{5} \\ & (\mu \mathrm{~g} / \mathrm{L}) \end{aligned}$ | Silicate $\text { ( } \mu \mathrm{g} / \mathrm{L})$ | $\begin{gathered} \mathbf{D O}^{3} \\ \text { (\% sat) } \end{gathered}$ | Turb (NTU) | Secchi (m) | $\begin{gathered} \mathbf{S S}^{2,5} \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$ | pH |
| Coastal (including lower estuary) and marine waters in ports, marinas, spoil grounds: toxicants $(s 1, s 3, s 5, s 6)$ | all | - Toxicants (excluding biocides - see below) in water: refer to $95 \%$ species protection values (or $99 \%$ species protection values for those toxicants identified in ANZG as having bioaccumulation potential) contained in: <br> - ANZG (2018) 'toxicant default guideline values for water quality in aquatic ecosystems', as amended The following sources, where their guideline values post-date the specified ANZG guideline value, or where there is no ANZG value specified for a toxicant (Note: the ANZG specifies the date of guideline development for each toxicant): <br> - Aluminium: $<24 \mu \mathrm{~g} / \mathrm{L}$ ( $95 \%$ species protection. Applies to the measured concentration in seawater that passes through a $0.45 \mu \mathrm{~m}$ filter) [Source: Golding et al. (2015)] <br> - Biocides in water: refer to $99 \%$ species protection values (tributyltin: apply $95 \%$ species protection values) contained in: <br> - ANZG (2018) 'toxicant default guideline values for water quality in aquatic ecosystems', as amended <br> - The following sources, where their guideline values post-date the specified ANZG guideline value, or where there is no ANZG value specified for a toxicant (Note: the ANZG specifies the date of guideline development for each toxicant): <br> - GBRMPA (2010) Water quality guidelines for the Great Barrier Reef Marine Park 2010 <br> - King et al (2017, as amended) (vol 1 and 2) Proposed aquatic ecosystem protection guideline values for pesticides commonly used in the Great Barrier Reef catchment area (available from Queensland Government publications) <br> - Toxicants in sediments: refer to ANZG 'toxicant default guideline values for sediment quality' <br> - Ship-sourced pollutants (including sewage): Discharge of ship-sourced pollutants (including sewage) to be controlled in accordance with requirements of the Transport Operations (Marine Pollution) Act 1995 and Regulation 2018. (Refer to Maritime Services Queensland website for further information.) <br> - Anti-fouling: Comply with Anti-fouling and in-water cleaning guidelines (2015, as amended) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| COASTAL AND MARINE WATERS - TEMPERATURE, BIOLOGICAL |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Coastal and marine waters | all | Temperature (s3): Increases of no more than $1^{\circ} \mathrm{C}$ above long-term (20 year) average maximum. (GBRMPA, 2010) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Coastal waters: biological (s1) | All (where applicable) | Seagrass <br> Light requirements are specified as a photosynthetic active radiation (PAR) moving average, depending on seagrass species. Levels specified here are derived to support the health of all species present either as the dominant species or as one of a suite of species that are known to occur in the region. It does not reflect requirements for macroalgae or other organisms. <br> - Deep water areas $(>10 \mathrm{~m}) 2.5 \mathrm{~mol} \mathrm{~m}^{-2}$ day $^{-1}$ over a rolling 7 day average ${ }^{\#}$ (Collier et al 2016; Chartrand et al 2014; Rasheed et al 2014; York et al 2015) <br> - Shallow inshore areas ( $<10 \mathrm{~m}$ ): $6 \mathrm{~mol} \mathrm{~m}^{-2}$ day $^{-1}$ over a rolling 14 day average ${ }^{\#}$ (Collier et al 2016; Chartrand et al, 2012) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |


| Water area/type <br> (Source: s1-s6) <br> (refer plan WQ1082) | Management intent /Level of protection | WET TROPICS - COASTAL AND MARINE WATERS (refer plan WQ1082) <br> Aquatic Ecosystem water quality objectives ${ }^{1-7}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Note: WQGs for indicators are shown as a range of $20^{\text {th }}, 50^{\text {th }}$ and $80^{\text {th }}$ percentiles to be maintained or achieved (e.g. $3-4-5$ ), lower and upper limits (e.g. pH: 7.2-8.2), or as a single value (e.g. $<15$ ). For single value WQOs, medians (or means where specified) of test data are compared against the WQO (refer to 'Note 7: comparison of test data with WQOs' for more details). <br> HEV - high ecological value; SD - slightly disturbed; MD - moderately disturbed. Refer to accompanying plans for details; ID - insufficient data <br> Sources: S1: Local datasets/reporting; S2: QWQG guidelines and /or data; S3: GBRMPA (2010) WQG; S4: GBRMPA analysis of Marine Monitoring Program and/or AIMS Long Term Monitoring Program datasets; S5: ANZG (2018); S6: CSIRO aluminium studies (Golding et al., 2015) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | Amm N ${ }^{1}$ $(\mu \mathrm{g} / \mathrm{L})$ | Oxid ${ }^{1}{ }^{1}$ ( $\mu \mathrm{g} / \mathrm{L}$ ) | Partic $\mathbf{N}^{5}$ ( $\mu \mathrm{g} / \mathrm{L}$ ) | Total Diss N ( $\mu \mathrm{g} / \mathrm{L}$ ) | Total N ( $\mu \mathrm{g} / \mathrm{L}$ ) | $\begin{gathered} \text { FRP } \\ (\mu \mathrm{g} / \mathrm{L}) \end{gathered}$ | Partic $\mathrm{P}^{5}$ ( $\mu \mathrm{g} / \mathrm{L}$ ) | Total Diss $\mathbf{P}$ $(\mu \mathrm{g} / \mathrm{L})$ | Total $\mathbf{P}$ ( $\mu \mathrm{g} / \mathrm{L}$ ) | $\begin{aligned} & \text { Chl-a }{ }^{5} \\ & (\mu \mathrm{~g} / \mathrm{L}) \end{aligned}$ | Silicate ( $\mu \mathrm{g} / \mathrm{L}$ ) | $\begin{gathered} \mathrm{DO}^{3} \\ \text { (\% sat) } \end{gathered}$ | Turb <br> (NTU) | Secchi <br> (m) | $\begin{gathered} \mathbf{S S}^{2,5} \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$ | pH |
|  |  | Note: \# Absolute light requirements for seagrass may vary between sites. Values described here provide a conservative guide to the levels of light likely to support seagrass growth. Locally derived absolute thresholds ideally should be obtained for management of specific activities likely to impact on the light environment. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Abbreviations: ANZG - Australian and New Zealand guidelines for fresh and marine water quality; QWQG - Queensland water quality guidelines; ID - insufficient data. Will be updated if information becomes available; na - not applicable; * - limited data. To be used as interim value until further data is available.

Indicators: FRP - filterable reactive phosphorus; Chl-a - chlorophyll-a; DO - dissolved oxygen; SS - total suspended solids;
Units: $\mu \mathrm{g} / \mathrm{L}$ - micrograms per litre; \% sat - percent saturation; NTU - nephelometric turbidity units; m - metres; $\mathrm{mg} / \mathrm{L}$ - milligrams per litre;
Management intent: Waters for which all physico-chemical WQOs (e.g. nutrients, toxicants) have been set corresponding to HEV management intent are identified in columns 1 and 2 of Table 2 . Each of these waters is given a specific label in the table (e.g. 'HEV1234') which links to the accompanying plans. Slightly disturbed (SD) waters are similarly identified.
The management intent (level of protection) for most waters other than HEV or SD is to achieve a 'moderately disturbed' (MD) condition, for which corresponding WQOs have been derived. Where local WQOs are derived for MD areas these are also identified with specific labels (e.g. 'MD1234'). For some indicators and water types, WQOs correspond with a 'slightly to moderately disturbed' (SMD) level of protection, based on management intent categories specified in source technical guidelines, in particular the ANZG (2018). For ease of interpretation, this document and accompanying mapping include these within the MD level of protection. For some MD waters a higher level of protection may be provided for toxicants (e.g. pesticides).

## Notes to Table (where applicable):

1. Nutrients:

Oxidised $\mathrm{N}=\mathrm{NO}_{2}+\mathrm{NO}_{3}$. Dissolved inorganic $\mathrm{N}($ DIN $)=A m m \mathrm{~N}+$ oxidised N .
Except where specified for event conditions, nutrient guidelines do not apply during high flow events in fresh and estuarine waters. During periods of low flow and particularly in smaller creeks, buildup of organic matter derived from natural sources (e.g. leaf litter) can result in increased organic $N$ levels (generally in the range of 400 to $800 \mu \mathrm{~g} / \mathrm{L}$ ). This may lead to total N values exceeding the WQGs. Provided that levels of inorganic $N$ (i.e. $\mathrm{NH}_{3}+$ oxidised N ) remain low, then the elevated levels of organic N should not be seen as a breach of the WQGs, provided this is due to natural causes. See QWQG (section 5 and Appendix D ) for more information on applying guidelines under high flow conditions.
2. Suspended solids: Suspended solids (and hence turbidity and Secchi depth) levels in coastal waters are naturally highly variable depending on wind speed/wave height and in some cases on tidal cycles. The values in this table provide guidance on what the long term values of turbidity, Secchi depth or TSS should comply with. However, these values will often be naturally exceeded in the short term during windy weather or spring tides. They therefore should not be used for comparison with short term data sets. Where assessable coastal developments are proposed, proponents should
carry out site specific intensive monitoring of these indicators (or equivalent light penetration indicators) and use these as a baseline for deriving local guidelines and for comparison with post development conditions.
 per cent saturation below daytime values. In freshwaters, night-time reductions are more variable. Following significant rainfall events, reduced DO values may occur due to the influx of organic material. In estuaries post-event values as low as 40 per cent saturation may occur naturally for short periods but values well below this would indicate some anthropogenic effect. In freshwaters,

 should only be applied to flowing waters. Stagnant pools in intermittent streams naturally experience values of DO below 50 per cent saturation.
4. Open coastal/marine waters - GBR plume line: The GBR plume discharge area is derived from a smoothed version of the 'high' and 'very high' risk classes of modelled outputs from the risk assessment element of the Reef Plan Scientific Consensus Statement 2013 (Waterhouse et al. 2013).
 generally December to April, however will vary annually and should be assessed based on discharge and antecedent rainfall. While seasonal means are estimated based on biotic responses the
 and end at different times of the year. Seasonal dates indicated are generally applicable. Applying these values for any management action should take both of these matters into account
6. Open coastal/marine waters - Secchi depth. For waters shallower than the specified Secchi depth of $\geq 10 \mathrm{~m}$ the depth to seafloor is the WQO.
7. Comparison of test data with WQOs: The following protocols are recommended when comparing fresh, estuarine or coastal/marine water quality (at a 'test' site) with the corresponding aquatic ecosystem water quality objective (WQO). For concentration-based indicators (e.g. nutrients) and turbidity (NTU), the intent is for test site water quality value to be less than or equal to the corresponding WQO. For WQO indicators where a range is specified (e.g. pH, DO), the intent is that the test site water quality median value falls within the specified WQO range. For Secchi
 QWQG.

For HEV and SD waters:
 range of values. The sample number is a minimum of 24 test values over the relevant period ( 12 months if a continuous activity or alternatively a shorter period for activities where discharge occurs for only part of the year).

- For DO and pH , test sample median values are compared with, and should fall within, the specified percentile range.
- Where a single WQO value is provided, the median value of preferably five or more independent samples at a monitoring (test) site should be compared against the corresponding aquatic ecosystem WQO.


## For MD and HD waters:

 in these waters are typically expressed as a single figure).

- For DO and pH , test sample median values are compared with, and should fall within the specified range.

For toxicants in water: unless otherwise stated, WQOs for toxicants are derived from the Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG, 2018) default guideline
 that is required to be less than the default guideline value is high, the ANZG indicates that a single observation greater than the default guideline value is considered an exceedance.

For comparisons of toxicants in sediments, refer to ANZG
 percentile range. For these waters, the mean water quality value of a number of independent samples at a particular monitoring ('test') site should be compared against the applicable WQO. The sample number is preferably five or more samples for within season comparison, and five or more samples taken during each of the wet and dry seasons for annual mean comparisons. However, more samples may be required depending on the inherent variability in the measurement data (Queensland Monitoring and Sampling Manual; Section 1.9.1).

Further information: Refer to the QWQG, the Queensland Monitoring and Sampling Manual (2018), and ANZG for more details.

## Sources

ANZG (2018, as amended) Australian and New Zealand guidelines for fresh and marine water quality.
Australian Government (2015) Anti-fouling and in-water cleaning guidelines, Department of Agriculture, Canberra. CC BY 3.0
Chartrand KM, Ralph PJ, Petrou K and Rasheed MA. (2012) Development of a Light-Based Seagrass Management Approach for the Gladstone Western Basin Dredging Program. DAFF Publication. Fisheries Queensland, Cairns 126 pp.

Chartrand K, Sinutok S, Szabo M, Norman L, Rasheed MA, Ralph PJ, (2014), 'Final Report: Deepwater Seagrass Dynamics - Laboratory-Based Assessments of Light and Temperature Thresholds for Halophila spp.', Centre for Tropical Water \& Aquatic Ecosystem Research (TropWATER) Publication, James Cook University, Cairns, 26 pp.
 Report to the National Environmental Science Programme. Reef and Rainforest Research Centre Limited, Cairns (35 pp.).
De'ath G, Fabricius KE (2008) Water quality of the Great Barrier Reef: distributions, effects on reef biota and trigger values for the protection of ecosystem health. Final Report to the Great Barrier Reef Marine Park Authority. Australian Institute of Marine Science, Townsville. (104 pp.).
Department of Environment and Heritage Protection (2009) Queensland Water Quality Guidelines, Version 3, ISBN 978-0-9806986-0-2. Queensland Government. Re-published July 2013.)
 Golding, LA, Angel, BM, Batley, GE, Apte, SC, Krassoi, R and Doyle, CJ (2015) Derivation of a water quality guideline for aluminium in marine waters, Environ Toxicol Chem., 34 : 141-151.
Great Barrier Reef Marine Park Authority (2010) Water quality guidelines for the Great Barrier Reef Marine Park 2010, Great Barrier Reef Marine Park Authority, Townsville, available on the Great Barrier Reef Marine Park Authority's website.

 and Science. Brisbane, Queensland, Australia. 296 pp. August 2017 (amended March 2018). Available from Queensland Government publications

 of Science, Information Technology and Innovation. Brisbane, Queensland, Australia. August 2017. Available from Queensland Government publications
 Cook University, Centre for Tropical Water \& Aquatic Ecosystem Research, Report No 15/23.
 45 pp.
McKenna, SA, Rasheed, MA, Unsworth, RKF, \& Chartrand, KM (2008) Port of Abbot Point seagrass baseline surveys - wet \& dry season 2008. DPI\&F Publication PR08-4140 (DPI\&F, Cairns), 51pp
Rasheed, M. A., McKenna, S. A., Carter, A. B. \& Coles, R. G.(2014) Contrasting recovery of shallow and deep water seagrass communities following climate associated losses in tropical north Queensland, Australia. Mar. Pollut. Bull. 83, 491-499.

Schaffelke B, Carleton J, Doyle J, Furnas M, Gunn K, Skuza M, Wright M, Zagorskis I (2011) Reef Rescue Marine Monitoring Program. Final Report of AIMS Activities 2010/11-Inshore Water Quality


## State of Queensland (2018) Great Barrier Reef water quality improvement plan 2017-2022

Transport Operations (Marine Pollution) Act 1995 and Regulations 2008, available on the Office of Queensland Parliamentary Counsel website

 nutrients and pesticides, and among NRM regions. In: Brodie et al. Assessment of the relative risk of water quality to ecosystems of the Great Barrier Reef. A report to the Department of the Environment and Heritage Protection, Queensland Government, Brisbane. TropWATER Report 13/28, Townsville, Australia.

York, P. H. et al. Dynamics of a deep-water seagrass population on the Great Barrier Reef: annual occurrence and response to a major dredging program. Sci. Rep. 5, 13167; doi: 10.1038/srep13167 (2015)

Unpublished water quality datasets

BARRON RIVER BASIN SURFACE WATERS - IONIC INDICATORS - AQUATIC ECOSYSTEM WQOs AMENDMENTS 2020
Applying to fresh surface waters of the Barron River Basin.
Table 2b Water quality objectives for major ions in Barron River Basin surface waters

|  | BARRON RIVER BASIN SURFACE WATERS water quality objectives for major ions in surface waters |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Percentile | EC ( $\mu \mathrm{S} / \mathrm{cm}$ ) | Alkalinity as CaCO3 (mg/L) | Hardness as CaCO3 (mg/L) | $\underset{(\mathrm{mg} / \mathrm{L})}{\mathrm{Ca}}$ | $\underset{(\mathrm{mg} / \mathrm{L})}{\mathrm{Mg}}$ | $\begin{gathered} \mathbf{K} \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$ | Na (mg/L) | $\underset{(\mathrm{mg} / \mathrm{L})}{\mathbf{C l}}$ | $\begin{gathered} \mathrm{SO}_{4} \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$ | $\mathrm{HCO}_{3}$ <br> (mg/L) | $\begin{gathered} \mathrm{CO}_{3} \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$ | $\mathrm{SiO}_{2}$ <br> (mg/L) | $\underset{(\mathrm{mg} / \mathrm{L})}{\mathbf{F}}$ |
| 20 | 70 | 20 | 17 | 2.7 | 2.4 | 1.2 | 6 | 8 | 0.7 | 24 | 0 | 12 | 0.02 |
| 50 | 85 | 26 | 22 | 3.8 | 3 | 1.6 | 7 | 9.6 | 1.2 | 32 | 0.02 | 15 | 0.1 |
| 80 | 110 | 36 | 31 | 5.8 | 4.1 | 1.9 | 10 | 13 | 2 | 44 | 0.1 | 18 | 0.1 |
| 90 | 136 | 45 | 39 | 7.1 | 5 | 2.1 | 12 | 15.3 | 3 | 55 | 0.2 | 20 | 0.2 |

Note:

1. Water Quality Objective for MD waters is the median value ( $50^{\text {th }}$ percentile).
2. Water Quality Objective for HEV and SD waters is $20^{\text {th }}-50^{\text {th }}-80^{\text {th }}$ percentiles.
3. Major ion concentration percentiles across freshwaters in the Barron Basin (based on DNRME data, $\mathrm{N}>900$ for each indicator).
4. Detection of ionic concentrations at a site that consistently exceed the 80th percentile values or detection of a single value that greatly exceeds a 90th percentile value should be considered triggers for further investigation. Note however that exceedances can occur naturally in some smaller waterways due to local geological influences.
Indicators: EC - electrical conductivity
Source: DES Science technical review and advice, June 2020.

## 3 Water quality objectives for human use environmental values

This section outlines water quality objectives (WQOs) to protect human use environmental values (EVs), which comprise those EVs (e.g. recreation, stock watering, aquaculture and crop irrigation) other than the aquatic ecosystem EV. Where a human use EV has been identified, the following tables can be used to identify the WQOs to support that EV. Where more than one EV applies to a given water (for example aquatic ecosystem and recreational use), the adoption of the most stringent WQO for each water quality indicator will then protect all identified EVs.
WQOs in this section are, unless otherwise specified, based on relevant national water quality guidelines including ANZG (2018, as amended) and the Australian Drinking Water Guidelines (ADWG). Where national guidelines or other codes remain the primary source for WQOs, reference to those national guidelines or codes is necessary to obtain comprehensive listings of all indicators and corresponding WQOs.

### 3.1 Human use EVs water quality objectives

The following table summarises WQOs for human use EVs. More details are provided in subsequent sections by human use EV.

## Table 3 Human use EVs water quality objectives

$\left.\begin{array}{|l|l|l|}\hline \begin{array}{l}\text { Environmental } \\ \text { value }\end{array} & \begin{array}{l}\text { Water } \\ \text { type/area }\end{array} & \begin{array}{l}\text { Water quality objective to protect EV } \\ \text { (refer to specified codes and guidelines for full details) }\end{array} \\ \hline \begin{array}{l}\text { Suitability for } \\ \text { drinking water } \\ \text { supply }\end{array} & \begin{array}{l}\text { All fresh waters } \\ \text { including } \\ \text { groundwaters }\end{array} & \begin{array}{l}\text { The Australian Drinking Water Guidelines (NHMRC, 2011, as amended) } \\ \text { provides a framework for catchment management and source water protection } \\ \text { for drinking water supplies. } \\ \text { Quality of raw water (prior to treatment) should consider the requirements of } \\ \text { water supply operators, and their capacity to treat the water to make it safe for } \\ \text { human consumption. Also refer to Table 4. } \\ \text { Note: For water quality after treatment or at point of use refer to legislation and } \\ \text { guidelines, including: } \\ \text { - Public Health Act 2005 and Regulation } \\ \text { - Water Supply (Safety and Reliability) Act 2008, including any approved }\end{array} \\ \text { drinking water quality management plan under the Act }\end{array}\right\}$

| Environmental value | Water type/area | Water quality objective to protect EV (refer to specified codes and guidelines for full details) |
| :---: | :---: | :---: |
| Suitability for industrial use | Fresh waters, estuarine and coastal waters | None provided. Water quality requirements for industry vary within and between industries. The ANZG do not provide guidelines to protect industries, and indicate that industrial water quality requirements need to be considered on a case-by-case basis. This EV is usually protected by other values, such as the aquatic ecosystem EV. |
| Suitability for aquaculture | Fresh waters, estuarine and coastal waters | As per: <br> - Tables 5-7 <br> - ANZG and Australia New Zealand Food Standards Code, Food Standards Australia New Zealand, as amended |
| Suitability for irrigation | All fresh waters including groundwaters | Pathogens and metal WQOs are provided in Tables 8 and 9 (based on ANZG). For all other indicators, such as salinity, sodicity, sodium adsorption ratio (SAR), and herbicides, refer ANZG. |
| Suitability for stock watering | All fresh waters including groundwaters | As per ANZG, including median faecal coliforms <100 organisms per 100 mL . For total dissolved solids and metals, refer Tables 10 and 11, based on ANZG. For other indicators, such as cyanobacteria and pathogens, see ANZG. |
| Suitability for farm supply/use | All fresh waters including groundwaters | As per ANZG. |
| Suitability for primary contact recreation | Fresh waters, estuarine and coastal waters | Note: at time of publication the NHMRC guidelines for recreational water quality were under review, and updates may supersede the following. Refer to NHMRC website for latest information and updated guidelines. <br> As per NHMRC (2008 - refer NHMRC website) including: <br> - water free of physical (floating and submerged) hazards. Where permanent hazards exist (e.g. rips and sandbars), appropriate warning signs should be clearly displayed. <br> - temperature range: $16-34^{\circ} \mathrm{C}$ <br> - pH range: 6.5-8.5 <br> - DO: $>80 \%$ <br> - faecal contamination: designated recreational waters are protected against direct contamination with fresh faecal material, particularly of human or domesticated animal origin. Two principal components are required for assessing faecal contamination: <br> - assessment of evidence for the likely influence of faecal material <br> - counts of suitable faecal indicator bacteria (usually enterococci) <br> These two components are combined to produce an overall microbial classification of the recreational water body. <br> - direct contact with venomous or dangerous aquatic organisms should be avoided. Recreational water bodies should be reasonably free of, or protected from, venomous organisms (e.g. box jellyfish and bluebottles) <br> - waters contaminated with chemicals that are either toxic or irritating to the skin or mucous membranes are unsuitable for recreational purposes. |
| Suitability for primary contact recreation | Fresh waters | Note: at time of publication the NHMRC guidelines for recreational water quality were under review, and updates may supersede the following. Refer to NHMRC website for latest information and updated guidelines. <br> - cyanobacteria/algae: Recreational water bodies should not contain: <br> - level $1^{1}: \geq 10 \mu \mathrm{~g} / \mathrm{L}$ total microcystins; or $\geq 50000$ cells $/ \mathrm{mL}$ toxic Microcystis aeruginosa; or biovolume equivalent of $\geq 4 \mathrm{~mm}^{3} / \mathrm{L}$ for the combined total of all cyanobacteria where a known toxin producer is dominant in the total biovolume or <br> - level $2^{1}: \geq 10 \mathrm{~mm}^{3} / \mathrm{L}$ for total biovolume of all cyanobacterial material where known toxins are not present <br> - where Cylindrospermopsis caciborskii is the dominant species present, advice should be sought for an appropriate guideline for |


| Environmental value | Water type/area | Water quality objective to protect EV (refer to specified codes and guidelines for full details) |
| :---: | :---: | :---: |
|  |  | cylindrospermopsin or cyanobacterial scums consistently present. Further details are contained in NHMRC (2008) and Table 12. |
|  | Estuarine, coastal waters | - cyanobacteria/algae: Recreational water bodies should not contain $\geq 10$ cells/mL Karenia brevis and/or have Lyngbya majuscula and/or Pfiesteria present in high numbers ${ }^{2}$. Further details are contained in NHMRC (2008) and Table 12. |
| Suitability for secondary contact recreation | Fresh waters, estuarine and coastal waters | As per NHMRC (2008), including: <br> - intestinal enterococci: refer primary recreation above <br> - cyanobacteria/algae—refer primary recreation, NHMRC (2008) and Table 12. |
| Suitability for visual recreation | Fresh waters, estuarine and coastal waters | As per NHMRC (2008), including: <br> - recreational water bodies should be aesthetically acceptable to recreational users. The water should be free from visible materials that may settle to form objectionable deposits; floating debris, oil, scum and other matter; substances producing objectionable colour, odour, taste or turbidity; and substances and conditions that produce undesirable aquatic life. <br> - cyanobacteria/algae-see, NHMRC (2008) and Table 12. |

## Notes:

1. Level 1 recognises the probability of adverse health effects from ingestion of known toxins, in this case based on the toxicity of microcystins. Level 2 covers circumstances in which there are very high cell densities of cyanobacterial material, irrespective of the presence of toxicity or known toxins. Increased cyanobacterial densities increase the likelihood of non-specific adverse health outcomes, principally respiratory, irritation and allergy symptoms. (NHMRC, 2008; 8).
2. The NHMRC states that its guidelines are concerned 'only with risks that may be associated with recreational activities in or near coastal and estuarine waters. This includes exposure through dermal contact, inhalation of sea-spray aerosols and possible ingestion of water or algal scums, but does not include dietary exposure to marine algal toxins.' (NHMRC, 2008; 121).

## Sources:

The WQOs were determined from a combination of sources, including:

- Technical review and advice from Queensland Health and Department of Natural Resources, Mines and Energy (2020)
- Australian Drinking Water Guidelines (NHMRC, 2011 as updated 2016), available from NHMRC website
- Australia New Zealand Food Standards Code (Australian Government: Food Standards Australia New Zealand), available from Food Standards Australia New Zealand website
- Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG, 2018, as amended)
- Guidelines for Managing Risks in Recreational Water (NHMRC, 2008), available from NHMRC website. At time of publication the NHMRC guidelines were under review. Refer to NHMRC website for latest information and updated guidelines.
- Safe Water on Rural Properties Guideline (Queensland Health, 2015)


### 3.2 Drinking water EV water quality objectives

Table 4 Drinking water EV: Priority water quality objectives for drinking water supply in the vicinity of offtakes, including groundwater, before treatment

| Indicator | Water quality objective ${ }^{1}$ |
| :--- | :--- |
| Giardia | No guideline value set (ADWG) <br> If Giardia is detected in drinking water then the Water Supply Regulator, DNRME and <br> Queensland Health should be notified immediately and an investigation of the likely <br> source of contamination undertaken. |
| Cryptosporidium | No guideline value set (ADWG) <br> If Cryptosporidium is detected in treated drinking water then the Water Supply Regulator, <br> DNRME and Queensland Health should be notified immediately and an investigation of <br> the likely source of contamination undertaken. |
| E. coli | Well designed treatment plants with effective treatment barriers and disinfection are <br> designed to address faecal contamination. E. coli or thermotolerant coliforms should not <br> be present in any 100 mL sample of (treated) drinking water (ADWG). <1 cfu/100ml <br> (Public Health Regulation 2018) and upstream sewage effluent discharges need to be <br> known (catchment management). |
| Algal toxin | $<1.3$ 年/L Microcystin (ADWG) |

Source: Australian Drinking Water Guidelines (NHMRC, 2011 as updated 2018). Technical review and advice from Queensland Health and Department of Natural Resources, Mines and Energy (2020).

## Notes:

1. This table outlines WQOs for water before treatment, unless otherwise stated (e.g. ADWG). For water quality after treatment or at the point of use, refer to relevant legislation and guidelines, including Public Health Act 2005 and Regulation, Water Supply (Safety and Reliability) Act 2008 and Regulation, including any approved drinking water management plan under the Act, Water Fluoridation Act 2008, the Australian Drinking Water Guidelines (ADWG, 2011 updated December 2013), and the Safe Water on Rural Properties guideline (Queensland Health, 2015).
2. The ADWG notes that $50 \mathrm{mg} / \mathrm{L}$ is a 'typical value' in reticulated supplies. The ADWG value for sodium is $180 \mathrm{mg} / \mathrm{L}$ (based on level at which taste become appreciable) however 'sodium salts cannot be easily removed from drinking water' and 'any steps to reduce sodium concentrations are encouraged'. It further notes that 'medical practitioners treating people with severe hypertension or congestive heart failure should be aware if the sodium concentration in the patient's drinking water exceeds $20 \mathrm{mg} / \mathrm{L}$ ' (ADWG; sodium factsheet).

### 3.3 Aquaculture EV water quality objectives

The following tables outline WQOs for aquaculture, depending on water type and species.
Table 5 Aquaculture EV: General water quality objectives for tropical aquaculture

| Water parameter | Recommended range |  | Water parameter | Recommended range |
| :---: | :---: | :---: | :---: | :---: |
|  | Fresh water | Marine |  | General aquatic |
| Dissolved oxygen | >4 mg/L | >4 mg/L | Arsenic | <0.05 mg/L |
| Temperature | $21-32^{\circ} \mathrm{C}$ | $24-33^{\circ} \mathrm{C}$ | Cadmium | $<0.003 \mathrm{mg} / \mathrm{L}$ |
| pH | 6.8-9.5 | 7-9.0 | Calcium/Magnesium | 10-160 mg/L |
| Ammonia (TAN, total ammonia-nitrogen) | $<1.0 \mathrm{mg} / \mathrm{L}$ | $<1.0 \mathrm{mg} / \mathrm{L}$ | Chromium | $<0.1 \mathrm{mg} / \mathrm{L}$ |
| Ammonia ( $\mathrm{NH}_{3}$, unionised form) | $<0.1 \mathrm{mg} / \mathrm{L}$ | $<0.1 \mathrm{mg} / \mathrm{L}$ | Copper | $<0.006 \mathrm{mg} / \mathrm{L}$ in soft water |
| Nitrate ( $\mathrm{NO}_{3}$ ) | $1-100 \mathrm{mg} / \mathrm{L}$ | 1-100 mg/L | Cyanide | $<0.005 \mathrm{mg} / \mathrm{L}$ |
| Nitrite ( $\mathrm{NO}_{2}$ ) | $<0.1 \mathrm{mg} / \mathrm{L}$ | $<1.0$ mg/L | Iron | $<0.5 \mathrm{mg} / \mathrm{L}$ |
| Salinity | 0-5 psu | 15-35 psu | Lead | $<0.03 \mathrm{mg} / \mathrm{L}$ |
| Hardness | 20-450 mg/L | ID | Manganese | $<0.01 \mathrm{mg} / \mathrm{L}$ |
| Alkalinity | 20-400 mg/L | >100 mg/L | Mercury | <0.00005 mg/L |
| Turbidity | <80 NTU | ID | Nickel | $<0.01 \mathrm{mg} / \mathrm{L}$ in soft water $<0.04 \mathrm{mg} / \mathrm{L}$ in hard water |
| Chlorine | < $0.003 \mathrm{mg} / \mathrm{L}$ | ID | Tin | $<0.001 \mathrm{mg} / \mathrm{L}$ |
| Hydrogen sulphide | <0.002 mg/L | ID | Zinc | $0.03-0.06 \mathrm{mg} / \mathrm{L}$ in soft water $1-2 \mathrm{mg} / \mathrm{L}$ in hard water |

Indicator: psu - practical salinity unit, NTU - nephelometric turbidity units, ID - Insufficient data
Note: The table provides indicative water requirements for a range of aquaculture species (fresh and/or marine), recognising that not all listed species will occur in a given area, and that potential exists for changes in species under culture.

Source: Department of Primary Industries and Fisheries—Water Quality in Aquaculture—DPI Notes April 2004 (as amended) and DAF 20192020 technical review and advice.

Table 6 Aquaculture EV: Water quality objectives for optimal growth of particular freshwater species

## WATER QUALITY TARGET VALUES FOR AQUACULTURE

| Water parameter | Barramundi | Eel | Silver perch | Jade perch | Sleepy cod | Redclaw |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Dissolved oxygen | $4-9 \mathrm{mg} / \mathrm{L}$ | > $3 \mathrm{mg} / \mathrm{L}$ | >4 mg/L | > $3 \mathrm{mg} / \mathrm{L}$ | $>4.0 \mathrm{mg} / \mathrm{L}$ | >4.0 mg/L |
| Temperature | $26-32^{\circ} \mathrm{C}$ | $23-28^{\circ} \mathrm{C}$ | $23-28^{\circ} \mathrm{C}$ | $23-28^{\circ} \mathrm{C}$ | $22-31^{\circ} \mathrm{C}$ | $23-31^{\circ} \mathrm{C}$ |
| pH | 7.5-8.5 | 7.0-8.5 | 6.5-8.5 | 6.5-8.5 | 7.0-8.5 | 7.0-8.5 |
| Ammonia (TAN, Total ammonia-nitrogen) | ID | $<1.0$ mg/L | ID | ID | $<1.0 \mathrm{mg} / \mathrm{L}$ | $<1.0$ mg/L |
| Ammonia $\left(\mathrm{NH}_{3}\right.$, un-ionised form) | $<0.46 \mathrm{mg} / \mathrm{L}$ | <0.1 mg/L | $<0.1 \mathrm{mg} / \mathrm{L}$ | $<0.1 \mathrm{mg} / \mathrm{L}$ | $<0.1$ mg/L | $<0.1 \mathrm{mg} / \mathrm{L}$ |
| Nitrate ( $\mathrm{NO}_{3}$ ) | ID | ID | <100 mg/L | ID | ID | ID |
| Nitrite ( $\mathrm{NO}_{2}$ ) | $<1.5 \mathrm{mg} / \mathrm{L}$ | $<1.0 \mathrm{mg} / \mathrm{L}$ | $<0.1 \mathrm{mg} / \mathrm{L}$ | ID | $<1.0 \mathrm{mg} / \mathrm{L}$ | $<1.0 \mathrm{mg} / \mathrm{L}$ |
| Salinity (extended periods) | 0-35 psu | ID | $<5 \mathrm{psu}$ | $<5 \mathrm{psu}$ | ID | <4 psu |
| Salinity bath (short term treatment) | 0-35 psu | ID | $5-10 \text { psu for } 1$ hour | ID | max. 20 psu for 1 hour | ID |
| Hardness ( $\mathrm{CaCO}_{3}$ ) | 50-100 mg/L | ID | $>50 \mathrm{mg} / \mathrm{L}$ | $>50 \mathrm{mg} / \mathrm{L}$ | >40 mg/L | $>40 \mathrm{mg} / \mathrm{L}$ |
| Alkalinity | >50 mg/L | ID | 100-400 mg/L | 100-400mg/L | >40 mg/L | $>40 \mathrm{mg} / \mathrm{L}$ |
| Chlorine | $<0.04 \mathrm{mg} / \mathrm{L}$ | ID | ID | ID | <0.04 mg/L | ID |
| Hydrogen sulphide | $<0.3 \mathrm{mg} / \mathrm{L}$ | ID | ID | ID | $<0.3 \mathrm{mg} / \mathrm{L}$ | ID |
| Iron | $<0.1 \mathrm{mg} / \mathrm{L}$ | ID | $<0.5 \mathrm{mg} / \mathrm{L}$ | $<0.5 \mathrm{mg} / \mathrm{L}$ | $<0.1 \mathrm{mg} / \mathrm{L}$ | $<0.1 \mathrm{mg} / \mathrm{L}$ |
| Spawning temperature | marine | ID | 23-28 | 23-28 | $>24$ for more than 3 days | ID |

Indicator: psu - practical salinity unit, ID - Insufficient data
Note: The table provides indicative water requirements for a range of aquaculture species (fresh and/or marine), recognising that not all listed species will occur in a given area, and that potential exists for changes in species under culture.

Source: Department of Primary Industries and Fisheries—Water Quality in Aquaculture—DPI Notes April 2004 (as amended) and DAF 20192020 technical review and advice.

Table 7 Aquaculture EV: Water quality objectives for optimal growth of particular marine species

| Water parameter | Barramundi |  | Giant Tiger prawn (Penaeus monodon) |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Hatchery | Grow out | Hatchery | Grow out |
| Dissolved oxygen | saturation | > $4 \mathrm{mg} / \mathrm{L}$ | >4 mg/L | >3.5 mg/L |
| Temperature | $28-30^{\circ} \mathrm{C}$ optimum $25-31^{\circ} \mathrm{C}$ range | $28-30^{\circ} \mathrm{C}$ optimum | ${ }^{28-30}{ }^{\circ} \mathrm{C}$ | $26-32^{\circ} \mathrm{C}$ |
| pH | approx. 8 | approx. 8 | 7.8-8.2 | 7.5-8.5 |
| Ammonia (TAN, total ammonia-nitrogen) | ID | $0.1-0.5 \mathrm{mg} / \mathrm{L}$ | ID | <3 mg/L |
| Ammonia ( $\mathrm{NH}_{3}$, unionised form) | $<0.1 \mathrm{mg} / \mathrm{L}$ | $<0.1 \mathrm{mg} / \mathrm{L}$ | <0.1 mg/L | $<0.1$ mg/L |
| Nitrate ( $\mathrm{NO}_{3}$ ) | $<1.0 \mathrm{mg} / \mathrm{L}$ |
| Nitrite ( $\mathrm{NO}_{2}$ ) | $<0.2 \mathrm{mg} / \mathrm{L}$ | $<1.0 \mathrm{mg} / \mathrm{L}$ | $<0.2 \mathrm{mg} / \mathrm{L}$ | $<0.2 \mathrm{mg} / \mathrm{L}$ |
| Salinity | 28-31psu | 0-35psu | 30-35psu | $\begin{gathered} 10-25 \mathrm{psu} \\ \text { optimum } \end{gathered}$ |
| Alkalinity | ID | $105-125 \mathrm{mg} / \mathrm{L} \mathrm{CaCO}_{3}$ | ID | >80 mg/L |
| Clarity | ID | <10mg/L | ID | $\begin{gathered} \text { 30-40cm secchi } \\ \text { disk } \end{gathered}$ |
| Hydrogen sulphide | ID | $<0.3 \mathrm{mg} / \mathrm{L}$ | $<0.1 \mathrm{mg} / \mathrm{L}$ | $<0.1 \mathrm{mg} / \mathrm{L}$ |
| Iron | ID | $<0.02 \mathrm{mg} / \mathrm{L}$ | $<1 \mathrm{mg} / \mathrm{L}$ | $<1.0 \mathrm{mg} / \mathrm{L}$ |
| Spawning temperature | ID | $28-32^{\circ} \mathrm{C}$ | ID | $27-32^{\circ} \mathrm{C}$ |

Indicator: psu - practical salinity unit, ID - Insufficient data
Note: The table provides indicative water requirements for a range of aquaculture species (fresh and/or marine), recognising that not all listed species will occur in a given area, and that potential exists for changes in species under culture.
Source: Department of Primary Industries and Fisheries—Water Quality in Aquaculture—DPI Notes April 2004 (as amended) and DAF 20192020 technical review and advice.

### 3.4 Irrigation EV water quality objectives

The following tables outline WQOs for irrigation, based on relevant national guidelines.
Table 8 Irrigation EV: Water quality objectives for thermotolerant (faecal) coliforms in irrigation waters
used for food and non-food crops ${ }^{1}$ used for food and non-food crops ${ }^{1}$

| Intended use | Median values of thermotolerant <br> coliforms (colony forming units-cfu) |
| :--- | :---: |
| Raw human food crops in direct contact with irrigation water <br> (e.g. via sprays, irrigation of salad vegetables) | $<10 \mathrm{cfu} / 100 \mathrm{~mL}$ |
| Raw human food crops not in direct contact with irrigation <br> water (edible product separated from contact with water, e.g. <br> by peel, use of trickle irrigation); or crops sold to consumers <br> cooked or processed | $<1000 \mathrm{cfu} / 100 \mathrm{~mL}$ |
| Pasture and fodder for dairy animals (without withholding <br> period) | $<100 \mathrm{cfu} / 100 \mathrm{~mL}$ |
| Pasture and fodder for dairy animals (with withholding period <br> of five days) | $<1000 \mathrm{cfu} / 100 \mathrm{~mL}$ |
| Pasture and fodder (for grazing animals except pigs and dairy <br> animals, such as cattle, sheep and goats) | $<1000 \mathrm{cfu} / 100 \mathrm{~mL}$ |
| Silviculture, turf, cotton, etc. (restricted public access) | $<10000 \mathrm{cfu} / 100 \mathrm{~mL}$ |

## Notes:

1. Adapted from ARMCANZ, ANZECC and NHMRC (1999).
2. Refer to AWQG, Volume 1, Section 4.2.3.3 for advice on testing protocols. Source: AWQG, Volume 1, Section 4.2.3.3, Table 4.2.2.

Table 9 Irrigation EV: Water quality objectives for heavy metals and metalloids in agricultural irrigation water- soil cumulative contamination loading limit (CCL), long-term trigger value (LTV) and short-term trigger value (STV) ${ }^{1}$

| Element | Soil cumulative contaminant loading limit (CCL) ${ }^{2}(\mathbf{k g} / \mathrm{ha})$ | Long-term trigger value (LTV) in irrigation water (up to 100 years) (mg/L) | Short-term trigger value (STV) in irrigation water (up to 20 years) ( $\mathrm{mg} / \mathrm{L}$ ) |
| :---: | :---: | :---: | :---: |
| Aluminium | $N D^{2}$ | 5 | 20 |
| Arsenic | 20 | 0.1 | 2.0 |
| Beryllium | ND | 0.1 | 0.5 |
| Boron | ND | 0.5 | Refer to AWQG, Vol 3, Table 9.2.18 |
| Cadmium | 2 | 0.01 | 0.05 |
| Chromium | ND | 0.1 | 1 |
| Cobalt | ND | 0.05 | 0.1 |
| Copper | 140 | 0.2 | 5 |
| Fluoride | ND | 1 | 2 |
| Iron | ND | 0.2 | 10 |
| Lead | 260 | 2 | 5 |
| Lithium | ND | $2.5$ <br> (0.075 for citrus crops) | 2.5 <br> (0.075 for citrus crops) |
| Manganese | ND | 0.2 | 10 |
| Mercury | 2 | 0.002 | 0.002 |
| Molybdenum | ND | 0.01 | 0.05 |
| Nickel | 85 | 0.2 | 2 |
| Selenium | 10 | 0.02 | 0.05 |
| Uranium | ND | 0.01 | 0.1 |
| Vanadium | ND | 0.1 | 0.5 |
| Zinc | 300 | 2 | 5 |

## Notes:

1. Concentrations in irrigation water should be less than the trigger values. Trigger values should only be used in conjunction with information on each individual element and the potential for off-site transport of contaminants (refer AWQG, Volume 3, Section 9.2.5).
2. ND = Not determined; insufficient background data to calculate CCL.

Source: AWQG, Volume 1, Section 4.2.6, Table 4.2.10.

### 3.5 Stock watering EV water quality objectives

The following tables outline WQOs for stock watering, according to stock type (cattle, sheep etc.).
Table 10 Stock watering EV: Water quality objectives for tolerances of livestock to salinity, as total dissolved solids, in drinking water ${ }^{1}$

| Livestock | Total dissolved solids (TDS) (mg/L) |  |  |
| :--- | :---: | :--- | :--- |
|  | No adverse <br> effects on <br> animals <br> expected. | Animals may have initial reluctance <br> to drink or there may be some <br> scouring, but stock should adapt <br> without loss of production | Loss of production and decline in <br> animal condition and health would be <br> expected. Stock may tolerate these <br> levels for short periods if introduced <br> gradually |
| Beef cattle | $0-4000$ | $4000-5000$ | $5000-10000$ |
| Dairy cattle | $0-2500$ | $2500-4000$ | $4000-7000$ |
| Sheep | $0-5000$ | $5000-10000$ | $10000-13000^{2}$ |
| Horses | $0-4000$ | $4000-6000$ | $6000-7000$ |
| Pigs | $0-4000$ | $4000-6000$ | $6000-8000$ |
| Poultry | $0-2000$ | $2000-3000$ | $3000-4000$ |

## Notes:

1. From ANZECC (1992), adapted to incorporate more recent information.
2. Sheep on lush green feed may tolerate up to $13000 \mathrm{mg} / \mathrm{L}$ TDS without loss of condition or production.

Source: ANZECC, ARMCANZ (2000), Volume 1, Section 4.3.3.5, Table 4.3.1. Note that a review of stock watering tolerances under the ANZG (2018) may lead to revised values from those in this table. Refer to ANZG (2018) for further details.

Table 11 Stock watering EV: Water quality objectives (low risk trigger values) for heavy metals and metalloids in livestock drinking water

| Metal or metalloid | Trigger value (low risk) ${ }^{1,2}$ (mg/L) |
| :--- | :--- |
| Aluminium | 5 |
| Arsenic | 0.5 (up to 53 $^{3}$ ) |
| Beryllium | ND |
| Boron | 5 |
| Cadmium | 0.01 |
| Chromium | 1 |
| Cobalt | 1 |
| Copper | 0.4 (sheep), 1 (cattle), 5 (pigs), 5 (poultry) |
| Fluoride | 2 |
| Iron | not sufficiently toxic |
| Lead | 0.1 |
| Manganese | not sufficiently toxic |
| Mercury | 0.002 |
| Molybdenum | 0.15 |
| Nickel | 1 |
| Selenium | 0.02 |
| Uranium | 0.2 |
| Vanadium | 20 |
| Zinc |  |

## Notes:

1. Higher concentrations may be tolerated in some situations (further details provided in ANZECC, ARMCANZ (2000), Volume 3, Section 9.3.5).
2. $N D=$ not determined, insufficient background data to calculate.
3. May be tolerated if not provided as a food additive and natural levels in the diet are low.

Source: ANZECC, ARMCANZ (2000), Volume 1, Section 4.3.4, Table 4.3.2. Note that a review of stock watering tolerances under the ANZG (2018) may lead to revised values from those in this table. Refer to ANZG (2018) for further details.

### 3.6 Recreation EV water quality objectives - cyanobacteria

When cyanobacteria are present in large numbers they can present a significant hazard, particularly to primary contact users of waters. Water quality guidelines for cyanobacteria in recreational waters are provided below. Monitoring and action requirements relative to cyanobacteria 'alert' levels are summarised below, and are explained more fully in the Guidelines for Managing Risks in Recreational Water (NHMRC, 2008). Further details on the process to determine suitability of waters for recreation, relative to historical cyanobacterial levels and susceptibility to cyanobacterial contamination, are contained in sections 6 and 7 of the NHMRC guidelines.
Note: at time of publication the NHMRC guidelines for recreational water quality were under review, and updates may supersede the following. Refer to NHMRC website for latest information and updated guidelines.

Table 12 Recreational waters: Alert levels and corresponding actions for management of cyanobacteria

| Green level surveillance mode ${ }^{1}$ | Amber level alert mode ${ }^{1}$ | Red level action mode ${ }^{1}$ |
| :---: | :---: | :---: |
| Fresh waters |  |  |
| $\geq 500$ to $<5000$ cells $/ \mathrm{mL}$ M. aeruginosa or biovolume equivalent of $>0.04$ to $<0.4 \mathrm{~mm}^{3} / \mathrm{L}$ for the combined total of all cyanobacteria. | $\geq 5000$ to $<50000$ cells $/ \mathrm{mL}$ M. aeruginosa or biovolume equivalent of $\geq 0.4$ to $<4$ $\mathrm{mm}^{3} / \mathrm{L}$ for the combined total of all cyanobacteria where a known toxin producer is dominant in the total biovolume ${ }^{2}$. or ${ }^{3}$ <br> $\geq 0.4$ to $<10 \mathrm{~mm}^{3} / \mathrm{L}$ for the combined total of all cyanobacteria where known toxin producers are not present. | Level 1 guideline ${ }^{4}$ : <br> $\geq 10 \mu \mathrm{~g} / \mathrm{L}$ total microcystins <br> or <br> $\geq 50000$ cells $/ \mathrm{mL}$ toxic $M$. aeruginosa or biovolume equivalent of $\geq 4 \mathrm{~mm}^{3} / \mathrm{L}$ for the combined total of all cyanobacteria where a known toxin producer is dominant in the total biovolume. <br> or ${ }^{3}$ <br> Level 2 guideline ${ }^{4}$ : <br> $\geq 10 \mathrm{~mm}^{3} / \mathrm{L}$ for total biovolume of all cyanobacterial material where known toxins are not present. <br> or <br> cyanobacterial scums are consistently present ${ }^{5}$. |
| Coastal and estuarine waters |  |  |
| Karenia brevis |  |  |
| $\leq 1 \mathrm{cell} / \mathrm{mL}$ | > $1-<10$ cells $/ \mathrm{mL}$ | $\geq 10$ cells/mL |
| Lyngbya majuscula, Pfiesteria spp. |  |  |
| History but no current presence of organism | Present in low numbers | Present in high numbers. (For Lyngbya majuscula this involves the relatively widespread visible presence of dislodged algal filaments in the water and washed up onto the beach) |
| Nodularia spumigena: See NHMRC, Chapter 6 (Cyanobacteria and algae in fresh water) for details. |  |  |

## Notes:

1. Recommended actions at different alert levels are outlined below (based on NHMRC, 2008, Table 6.6—fresh waters. Similar actions are outlined for coastal/estuarine waters in NHMRC Table 7.6):
a. Green: Regular monitoring. Weekly sampling and cell counts at representative locations in the water body where known toxigenic species are present (i.e. Microcystis aeruginosa, Anabaena circinalis, Cylindrospermopsis raciborskii, Aphanizomenon ovalisporum, Nodularia spumigena); or fortnightly for other types including regular visual inspection of water surface for scums.
b. Amber: Notify agencies as appropriate. Increase sampling frequency to twice weekly at representative locations in the water body where toxigenic species (above) are dominant within the alert level definition (i.e. total biovolume) to establish population growth and spatial variability in the water body. Monitor weekly or fortnightly where other types are dominant. Make regular visual inspections of water surface for scums. Decide on requirement for toxicity assessment or toxin monitoring.
c. Red: Continue monitoring as for (amber) alert mode. Immediately notify health authorities for advice on health risk. ('In action mode the local authority and health authorities warn the public of the existence of potential health risks; for example, through the media and the erection of signs by the local authority.' NHMRC, 2008; 114). Make toxicity assessment or toxin measurement of water if this has not already been done. Health authorities warn of risk to public health (i.e. the authorities make a health risk assessment considering toxin monitoring data, sample type and variability).
2. The definition of 'dominant' is where the known toxin producer comprises 75 per cent or more of the total biovolume of cyanobacteria in a representative sample.
3. This applies where high cell densities or scums of 'non toxic' cyanobacteria are present i.e. where the cyanobacterial population has been tested and shown not to contain known toxins (mycrocystins, nodularian, cylindrospermopsin or saxitoxin).
4. Health risks and levels: Level 1 is developed to protect against short-term health effects of exposure to cyanobacterial toxins ingested during recreational activity, whereas the Level 2 applies to the circumstance where there is a probability of increased likelihood of non-specific adverse health outcomes, principally respiratory, irritation and allergy symptoms, from exposure to very high cell densities of cyanobacterial material irrespective of the presence of toxicity or known toxins (NHMRC, 2008;114).
5. This refers to the situation where scums occur at the recreation site each day when conditions are calm, particularly in the morning. Note that it is not likely that scums are always present and visible when there is a high population as the cells may mix down with wind and turbulence and then reform later when conditions become stable.

Source: Based on NHMRC (2008) Guideline for Managing Risks in Recreational Water (tables 6.2, 6.6, 7.3).

## Main parts of this document and what they contain



## Contents

Main parts of this document and what they contain ..... i
List of tables ..... iii
1 Introduction ..... 2
1.1 Waters to which this document applies-project waters ..... 2
1.2 Guidance on using this document ..... 3
1.3 Information about mapped areas and boundaries ..... 5
1.4 Water types and basis for boundaries ..... 6
1.5 Matters for amendment ..... 7
2 Environmental values. ..... 9
2.1 Environmental values ..... 9
2.2 Management goals ..... 9
3 Water quality objectives to protect environmental values ..... 19
3.1 State planning policy: state interest - water quality ..... 20
3.2 Water quality objectives to protect aquatic ecosystems and human use environmental values ..... 20
3.3 Water quality objectives for human use environmental values ..... 32
3.4 Water quality objectives to protect groundwater environmental values ..... 47
4 Ways to improve water quality ..... 58

## List of tables

Table 1 Environmental values for the waters of the Barron River basin (110) and adjacent coastalwaters11Table 2.1 Water quality objectives for physico-chemical, nutrient, algal and water clarity indicators to protect the aquatic ecosystems EVs under baseflow conditions ..... 23
Table 2.2 Water quality objectives for nutrients and suspended solids to protect aquatic ecosystem EVs during high flow periods ..... 26
Table 2.3 Water quality objectives for specific pesticides and biocides to protect aquatic ecosystem EVs ..... 27
Table 2.4 Water quality objectives for other ions, metals and chemical indicators in surface waters. ..... 29
Table 3.1 Water quality objectives to protect human use environmental values ..... 32
Table 3.2 Drinking water EV - Water quality objectives for raw drinking water supply in the vicinity of off- takes, including groundwater, before treatment ..... 35
Table 3.3 Aquaculture EV - Water quality objectives for tropical aquaculture. ..... 37
Table 3.4 Aquaculture EV - Water quality objectives for optimal growth of freshwater species ..... 38
Table 3.5 Aquaculture EV - Water quality objectives for optimal growth of particular marine species ..... 39
Table 3.6 Irrigation EV - Water quality objectives for thermotolerant (faecal) coliforms in irrigation water used for food and non-food crops ${ }^{1}$ ..... 40
Table 3.7 Irrigation EV - Water quality objectives for heavy metals and metalloids in agricultural irrigation water ${ }^{1}$ - long term trigger value (LTV), short-term trigger value (STV) and soil cumulative contamination loading limit (CCL) ..... 41
Table 3.8 Stock watering EV - Water quality objectives for tolerances of livestock to total dissolved solids (salinity) in drinking water ${ }^{1}$ ..... 42
Table 3.9 Stock watering EV - Water quality objectives (low risk trigger values) for heavy metals and metalloids in livestock drinking water ..... 43
Table 3.10 Recreational waters - Alert levels and corresponding actions for management of cyanobacteria ..... 44
Table 4.1 Water quality objectives to protect aquatic ecosystem EVs for Groundwater Chemistry Group (refer Plan WQ1083) - Wet Tropical Alluvial - 17 East Mareeba Dimbula Irrigation area ..... 48
Table 5.2 Water quality objectives to protect aquatic ecosystem EVs for Groundwater Chemistry Group (refer Plan WQ1083) - Wet Tropical Alluvial - 18 Barron Mulgrave Johnstone metamorphics ..... 49
Table 6.3 Water quality objectives to protect aquatic ecosystem EVs for Groundwater Chemistry Group (refer Plan WQ1083) - Wet Tropical Alluvial - 19 Daintree-Nth Barron uplands and slopes 50
Table 7.4 Water quality objectives to protect aquatic ecosystem EVs for Groundwater Chemistry Group (refer Plan WQ1083) - Wet Tropical Alluvial - 19 Basalt uplands and slopes ..... 51
Table 4.5 Water quality objectives to protect aquatic ecosystem EVs for Groundwater Chemistry Group (refer Plan WQ1083) - Sodic - 10 Granitic uplands and slopes ..... 52
Table 4.6 Water quality objectives to protect aquatic ecosystem EVs for Groundwater Chemistry Group (refer Plan WQ1083) - Coastal and Floodplain - 9 Low salinity coastal floodplains ..... 53
Table 4.7 Water quality objectives to protect aquatic ecosystem EVs for Groundwater Chemistry Group (refer Plan WQ1083) - High salinity alluvial deposits - 3 Ellie ..... 54
Table 4.8 Water quality objectives to protect aquatic ecosystem EVs for Groundwater Chemistry Group (refer Plan WQ1083) - High salinity alluvial deposits - 7 Clohesy ..... 55
Table 4.9 Water quality objectives to protect aquatic ecosystem EVs for Groundwater Chemistry Group (refer Plan WQ1083) - High sulphate - 26 NE Caravonica ..... 56

## Introduction and guidance on using this document

## 1 Introduction

This document is made under the provisions of the Environmental Protection (Water) Policy 2009 (EPP Water), which is subordinate legislation under the Environmental Protection Act 1994 (EP Act).
The EPP Water and the EP Act provide a framework for:

- establishing environmental values (EVs) and management goals for Queensland waters, and deciding the water quality objectives (WQOs) to protect or enhance those EVs
- listing the identified EVs, management goals and WQOs under Schedule 1 of the EPP (Water).

This document contains the EVs, management goals, WQOs and map products for the waters of the Barron River basin (110) ${ }^{1}$ and the adjacent coastal waters, to the limit of Queensland waters.
The document is listed under Column 2 of Schedule 1 of the EPP Water for the Column 1 entry of the Barron River basin (110) and adjacent coastal waters.

### 1.1 Purpose

The purpose of this document is to identify locally relevant environmental values and water quality objectives for the region, based on local historical data and in close consultation with the local community. These water quality objectives are used to help set development conditions, influence local government planning schemes and underpin report card grades for ecosystem health monitoring programs. These water quality objectives have been refined from national and state water quality guidelines and present a truer picture of the values and water quality of local waterways. This ensures the values the community holds for its waterways can be maintained and improved into the future, without imposing unrealistic standards from national guidelines that may be inappropriate for local conditions.

### 1.2 Waters to which this document applies-project waters

This document applies to all surface waters and groundwaters of the Barron River basin and adjacent coastal waters, as indicated in the accompanying maps WQ1101-surface waters, WQ1082-coastal waters and WQ1083-groundwaters.

The surface waters and groundwaters include:

- Upper Barron Division - Upper Barron, Poona, Morans, Gwynne, Peterson, Mobo and Robson Creeks
- Atherton Division - Rocky, Tolga, Mazlin Creeks and Barron R below Tinaroo
- Mareeba Division - Granite Creek, Tinaroo Creek, Emerald, Shanty, Pukanja, Blackwater, Oaky, Brindle Creeks and Barron River
- Kuranda zones - Davies, Reid, Groves, Thirty Three Creek, One Mile, Dismal, Kennedy, Tichum, Clohesy, Haren, Kauri, Jumrum, Mona, Big Rooty, Track, Kambul, Pearce, Flaggy, Rainy, Stony, Surprise, Shoteel and Myola Creeks and Barron Falls
- Cairns Zone -Clohesy River and Freshwater Creek
- Lower Barron River zone - Stratford, Thomatis, Moores Creek and Yorkeys Knob harbour

[^0]- lakes, drinking water storages and wetlands; including Lakes Tinaroo, Eacham and Morris, Copperlode Falls Dam, Hasties Swamp, Nardellos Lagoon and Cattana wetlands
- Barron River basin groundwaters
- Barron enclosed coastal waters and open coastal waters to the limit of Queensland waters.

The geographical extent of waters shown in the accompanying maps is:

- north to the Mossman River basin (109)
- west to the Mitchell River basin (919)
- south to the Johnstone River basin (112)
- east to the Mulgrave and Russell rivers basin (111)
- north-east via the Lower Barron River zone to the jurisdictional limit of Queensland waters.


### 1.3 Guidance on using this document

### 1.3.1 List of acronyms and terms

ADWG means the Australian Drinking Water Guidelines (2011)-updated December 2013, prepared by the National Health and Medical Research Council (NHMRC) ${ }^{2}$.
AWQG or ANZECC guidelines means the Australian and New Zealand Guidelines for Fresh and Marine Water Quality (October 2000) prepared by the Australian and New Zealand Environment and Conservation Council (ANZECC) and the Agriculture and Resource Management Council of Australia and New Zealand (ARMCANZ) ${ }^{3}$.
Aquatic ecosystem means the animals, plants and micro-organisms that live in water, and the physical and chemical environment and climatic regime in which they interact. The physical components (e.g. light, temperature) and chemical components (e.g. oxygen, nutrients), and to a lesser extent biological interactions, determine what lives and breeds in the aquatic ecosystem and the food web structure.
Basin means hydrologic drainage basin. Refer to the Geoscience Australia website www.ga.gov.au.
Catchment means the land area draining into a watercourse. The limits of a catchment are the heights of land (watershed) separating it from neighbouring catchments.
Developed fresh waters (or waters in developed areas) are waters in areas impacted through some form of development e.g. urban, industrial, rural residential or agricultural development and land uses. These waters are generally assigned the Moderately Disturbed (MD) level of protection.
Ecological health or condition of an aquatic ecosystem means the ability to maintain key ecological processes and organisms so that their species compositions, diversity and functional organisations are as comparable as possible to those occurring in natural habitats. There are four levels of aquatic ecosystems protection-High Ecological Value (HEV), Slightly Disturbed (SD), Moderately Disturbed (MD) and Highly Disturbed (HD). See Management intent for waters under the EPP Water (section 14).

Environmental values means the EVs at Section 2. EVs for waters are the qualities of water that make it suitable for supporting aquatic ecosystems and human uses. EVs under the EPP Water shown below.

[^1]| Environmental values (EVs) | Potentially applicable to: |  |
| :---: | :---: | :---: |
|  | Tidal waters | Fresh (non-tidal) waters, including ground water |
| Aquatic ecosystem EV <br> Environmental values may be stated for four levels of aquatic ecosystems protection <br> - high ecological value waters (effectively unmodified) <br> - slightly disturbed waters ( slightly modified) <br> - moderately disturbed waters (adversely affected to a relatively small but measurable degree) <br> - highly disturbed waters (measurably degraded). | $\checkmark$ | $\checkmark$ |
| Human use EVs <br> Suitability of the water for agricultural use (e.g. crop irrigation, stock watering, farm use) <br> Suitability of the water for aquaculture (e.g. prawns, barramundi) <br> Suitability of the water for producing aquatic foods (e.g. fish, crustaceans) for human consumption <br> Suitability of the water for supply as drinking water (i.e. raw water, before treatment) <br> Suitability of the water for industrial use (e.g. mining, minerals refining/processing) Suitability of the water for recreation: <br> - primary contact (e.g. swimming) <br> - secondary contact recreation (e.g. boating) <br> - visual (no contact) recreation <br> The cultural and spiritual values of the water |  | $\checkmark$ <br> $\checkmark$ |

GBRMPA guidelines means the Water Quality Guidelines for the Great Barrier Reef Marine Park, Great Barrier Reef Marine Park Authority 2010, published at the GBRMPA website.
Management goals means the goals stated in Section 2.2 of this document. Management goals are used to assess whether the corresponding environmental value is being maintained. They reflect the desired levels of protection for the aquatic system and any relevant environmental problems.
Management intent for waters-see Section 2.2.
Monitoring and Sampling Manual 2009 means the protocol document under the EP Act published on the department's website at www.ehp.qld.gov.au.
Queensland waters means waters within the state (i.e. headwaters to the three nautical mile jurisdiction limit).
QWQG means the Queensland Water Quality Guidelines, published at www.ehp.qld.gov.au.
Soil degradation, for the purposes of the objective for irrigation water in section 2.2.3, means reduced permeability and soil structure breakdown caused by the level of sodium in the irrigation water, assessed using the sodium adsorption ratio.
Undeveloped fresh waters (or waters in undeveloped areas) are waters within protected areas such as National Park, Regional Park and forest reserves or in other undisturbed states. These waters are given High Ecological Value (HEV) or Slightly Disturbed (SD) levels of protection.

Water quality indicator for an environmental value, under the EPP Water, means a physical, chemical, biological or other property that can be measured or decided in a quantitative way. For example:

- the concentration of nutrients and pH value are examples of chemical indicators
- Secchi disc water clarity measure is an example of a physical indicator
- seagrass depth range, macro-invertebrate family richness are examples of biological indicators.

Water quality guidelines under the EPP Water means the quantitative measures (expressed as contaminant concentrations, loads or narrative statements) for indicators which protect a stated EV. For a particular water, the indicators and water quality guidelines for an EV are decided using the following documents (in order of priority):

- site specific documents for the water
- the QWQG
- the AWQG
- other relevant documents published by a recognised entity.

Water quality guidelines may be modified by economic and social impact assessments of protecting the EVs for waters.

Water quality objectives (WQOs) means the WQOs at Section 3 which protect the EVs at Section 2. WQOs are the quantitative measures of the various water quality indicators that protect receiving waters aquatic ecosystem and human use EVs. WQOs are:

- numerical concentration levels, sustainable loads measures or narrative statements of indicators
- based on water quality guidelines, but may be modified by economic and social inputs
- receiving water quality objectives- not individual point source objectives or emission standards
- long-term goals for water quality management.

WQOs compliance assessment means the compliance assessment at Appendix D of the QWQG.
Water type means the grouping of waters within which water quality is sufficiently consistent that a single guideline value can be applied to all waters within each group (or water type). See section 1.5.

### 1.2.2 Use of this document

Section 1 - Introduction and guidance on using the document.
Section 2 - lists the identified EVs for protection for particular waters.
Section 3 - lists the WQOs to protect the corresponding aquatic ecosystems and human use EVs for each water type, including both surface waters and groundwaters.
This document refers to a number of water quality guidelines, codes and other reference sources. In particular, the QWQG provide detailed information on water types, water quality indicators, derivation of local water quality guidelines, monitoring and assessing compliance. ANZECC guidelines contain national water quality guidelines, for example water quality guidelines for toxicants.
Section 4 - lists documents relevant to the improvement of water quality in the Barron River basin.

### 1.4 Information about mapped areas and boundaries

The boundaries in the accompanying pdf plans are indicative only. The corresponding GIS datasets are available as part of the Wet Tropics Environmental Values Schedule 1 Geodatabase November 2014held at the department's offices at Level 10, 400 George Street Brisbane.
The GIS datasets may be downloaded free of charge from the Queensland Spatial Catalogue (QSpatial) at http://gldspatial.information.qld.gov.au/catalogue/custom/index.page
For further information, please email the department at epa.ev@ehp.qld.gov.au

### 1.5 Water types and basis for boundaries

### 1.5.1 Water types

Water types in this document are identified in Section 3 and the accompanying plans. Water types include (see the QWQG and GBRMPA guidelines):

- upland fresh waters-smaller upper catchments freshwater streams, above 150 metres altitude, moderate to fast flowing with steeper gradients than lowland fresh waters, downstream limitlowland fresh waters
- lowland fresh waters-larger slow moving freshwater streams and rivers, below 150 metres altitude, downstream limit - upper estuary
- freshwater lakes/reservoirs-deep water habitat situated in dammed river channels
- upper/mid estuary waters:
- upstream tidal limit-determined from EHP wetland mapping, declared downstream freshwater limit, mean high water springs or limiting structure
- downstream limit—lower estuary
- enclosed coastal/lower estuary waters-occur at the downstream end of estuaries and include shallow coastal waters (<6m depth) in enclosed bays (GBRMPA 2014)
- open coastal waters-extend from the seaward limit of the enclosed coastal water body to the jurisdictional limit of Queensland waters ${ }^{4}$
- groundwaters-sub-artesian waters that occur in an aquifer
- wetlands-palustrine, lacustrine and estuarine - see EHP mapping at Wetlandsinfo website.
- marinas, boat harbours, tidal canals and constructed estuaries


### 1.5.2 Water type boundaries

The boundaries of different water types are mapped in the accompanying plans using the following attributes, see QWQG for definitions, including:

- altitude (from Australian Height Datum, Geoscience Australia)
- catchment or sub catchment boundaries
- coastline mapping
- downstream or tidal limit-structure (limiting), declared downstream limit or mean high water springs
- enclosed coastal waters (GBRMPA 2014)
- geographic coordinates
- highest/lowest astronomical tide
- jurisdiction or defined coastal waters limits
- maritime mapping conventions
- plume line—seaward limit of detection of terrestrial impact—chlorophyll-a mapping (GBRMPA 2014)
- surveyed terrestrial and maritime boundaries.

[^2]
### 1.6 Matters for amendment

Under section 12 (2) (b) of the EPP (Water), amendments of the following type may be made to this schedule 1 document for the purposes of a replacement document:

- changes to EVs
- changes to management goals
- changes to WQOs
- changes to management intent (level of protection) categories
- changes to water type boundaries/descriptions
- updates to information/data sources, websites and email contact details, agency/departmental names, other institutional names, references.


## Environmental values for waters of the Barron River basin and adjacent coastal waters

## 2 Environmental values

### 2.1 Environmental values

The EVs for the surface waters and groundwaters of the Barron River basin and adjacent coastal waters are listed at table 1 and mapped in the accompanying plans and the GIS datasets.
The EVs were established during stakeholder consultation undertaken by the department and Terrain NRM - see Consultation Report: Environmental Values for Wet Tropics Basins, (Terrain NRM, September 2012).

### 2.2 Management goals

### 2.2.1 Management intent for waters - under the EPP Water

It is the management intent for waters that the decision to release waste water or contaminants to the waters must ensure the following:

- for high ecological value (HEV) waters-the measures for the indicators for all EVs are maintained
- for slightly disturbed (SD) waters-the measures for the slightly modified physical or chemical indicators are progressively improved to achieve the WQOs for HEV waters
- for moderately disturbed (MD) waters:
- if the measures for indicators of the EVs achieve the water quality objectives for the waterthe measures for the indicators are maintained at levels that achieve the WQOs for the water, or
- if the measures for indicators of the EVs do not achieve the water quality objectives for the water-the measures for indicators of the EVs are improved to achieve the WQOs for the water
- for highly disturbed (HD) waters-the measures for the indicators of all environmental values are progressively improved to achieve the water quality objectives for the water.
The mapping of HEV waters, SD waters and HD waters in the accompanying plans (or GIS datasets) informs the determination of Management Intent for particular waters.
Note 1 - All other waters in the accompanying plans are moderately disturbed (MD).
Note 2 - See the Environmental Protection Regulation 2008, section 51.
Note 3 - See the Environmental Protection (Water) Policy 2009, section 14.


### 2.2.2 Raw water for treatment for human consumption

- Minimise the risk that the quality of raw water taken for treatment for human consumption results in adverse human health effects.
- Maintain the palatability rating of water taken for treatment for human consumption at the level of good, as set out in the Australian Drinking Water Guidelines (ADWG).
- Minimise the risk that the quality of raw water taken for treatment for human consumption results in the odour of drinking water being offensive to consumers.


### 2.2.3 Irrigation water

The management goal for irrigation water is that the quality of surface water, when used in accordance with the best irrigation and crop management practices and principles of ecologically sustainable development, does not result in crop yield loss or soil degradation.

### 2.2.4 Recreational water quality

The management goal for recreational water quality is to achieve a low risk to human health from water quality threats posed by exposure through ingestion or contact during recreational use of water resources.

Table 1 Environmental values for the waters of the Barron River basin (110) and adjacent coastal waters

| Barron River basin (110) | Environmental values |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \text { 든 } \\ & \text { N } \\ & \text { 은 } \\ & \hline \end{aligned}$ |  |  |  |  |  |  |  |  |  |  |
|  |  |  | 4 |  |  | MD |  | -1) |  |  |  | $\because$ |

Surface fresh waters (rivers, creeks, streams) in developed areas (e.g. urban, industrial, rural residential, agriculture, farmlands)

| Barron River main channel from Mareeba downstream through Shanty and Pukanja Creeks sub-catchments | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  | $\checkmark$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Barron River main channel from Shanty and Pukanja Creeks sub-catchments to weir at Koah | $\checkmark$ |  | $\checkmark$ |
| Barron River main channel between weir at Koah and Barron Falls | $\checkmark$ |  |  |  |  | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  | $\checkmark$ | $\checkmark$ |
| Barron River main between Barron Falls and the estuarine limit at Kamerunga bridge. | $\checkmark$ |  |  | $\checkmark$ |  | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |  | $\checkmark$ |
| Oaky, Kambul, Track, Big Rooty and Flaggy Creeks | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  | $\checkmark$ |
| Pearce Creek | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  | $\checkmark$ |
| Rainy and Myola Creeks | $\checkmark$ |  | $\checkmark$ |


| Barron River basin (110) | Environmental values |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | $\square$ | 4 | 17 | ${ }^{5}$ | (110) | 0 | (4) | (0) | 5 | $\pm$ | S゙\% |
| Granite Creek | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  | $\checkmark$ |
| Shanty and Pukanja Creeks | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  | $\checkmark$ |
| Kauri, Groves, Thirty Three Mile, Blackwater, One Mile, Mona, JumRum, Haren and Dismal Creeks | $\checkmark$ |  | $\checkmark$ |
| Surprise Creek | $\checkmark$ | $\checkmark$ |  |  | $\checkmark$ |  |  |  | $\checkmark$ |  |  | $\checkmark$ |
| Barron Falls | $\checkmark$ | $\checkmark$ |  |  |  |  |  |  | $\checkmark$ |  |  | $\checkmark$ |
| Stony Creek | $\checkmark$ |  |  |  |  | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |  | $\checkmark$ |
| Thomatis and Stratford Creeks | $\checkmark$ |  |  |  |  | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |  | $\checkmark$ |
| Tichum Creek | $\checkmark$ |
| Kennedy fresh waters | $\checkmark$ |  |  | $\checkmark$ |  | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  | $\checkmark$ |
| Bridle Creek | $\checkmark$ |  |  | $\checkmark$ |  |  |  | $\checkmark$ | $\checkmark$ | $\checkmark$ |  | $\checkmark$ |
| Reid Creek | $\checkmark$ |  |  | $\checkmark$ |  |  |  | $\checkmark$ | $\checkmark$ | $\checkmark$ |  | $\checkmark$ |


| Barron River basin (110) | Environmental values |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | $\rightarrow$ | - | 4 | 11. | (5) | 0110 | 0 | (4) | (0) | $\overline{5}$ | $\cdots$ | S\% |
| Freshwater Creek | $\checkmark$ |  |  | $\checkmark$ |  | $\checkmark$ |
| Lake Morris (Copperlode Dam) | $\checkmark$ |  |  | $\checkmark$ |  |  |  |  | $\checkmark$ | $\checkmark$ |  | $\checkmark$ |
| Tinaroo Creek | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  | $\checkmark$ |
| Emerald Creek | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |  | $\checkmark$ |
| Brindle Creek | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  | $\checkmark$ |
| Davies Creek | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |  | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  | $\checkmark$ |
| Rocky Creek | $\checkmark$ | $\checkmark$ |  | $\checkmark$ |  | $\checkmark$ | $\checkmark$ |  | $\checkmark$ | $\checkmark$ |  | $\checkmark$ |
| Tolga | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  | $\checkmark$ | $\checkmark$ |  |  | $\checkmark$ |  | $\checkmark$ |
| Lake Tinaroo | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  | $\checkmark$ |
| Mobo and Robson Creeks | $\checkmark$ |  |  | $\checkmark$ |  | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |  | $\checkmark$ |
| Mazlin Creek | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  | $\checkmark$ |  |  | $\checkmark$ |  |  | $\checkmark$ |
| Morans, Poona and Carington Creeks | $\checkmark$ |  | $\checkmark$ |


| Barron River basin (110) | Environmental values |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | $\bigcirc$ |  | $\pi$ | 117) | ( | (112) | 0 | (1) | (0) | 5 | $\pm$ | S\% |
| Gwynne Creek | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  | $\checkmark$ | $\checkmark$ |  |  | $\checkmark$ |  | $\checkmark$ |
| Peterson Creek | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |  | $\checkmark$ |
| Upper Barron River | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |  | $\checkmark$ | $\checkmark$ |  | $\checkmark$ |  | $\checkmark$ |

Surface fresh waters in undeveloped areas (e.g. National Parks, forest reserves)


| Barron River basin (110) | Environmental values |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | $\rightarrow$ |  | 世10 | 17) | (\%) | N10 | 0 | 4 | 10) | $\bar{\square}$ | $\cdots$ | \%\% |
| Barron Falls | $\checkmark$ |  |  | $\checkmark$ |  | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  | $\checkmark$ |
| Stony Creek | $\checkmark$ |  |  | $\checkmark$ |  | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  | $\checkmark$ |
| Thomatis and Stratford Creeks | $\checkmark$ |  |  |  |  | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  | $\checkmark$ |
| Tichum Creek | $\checkmark$ |  |  | $\checkmark$ |  | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  | $\checkmark$ |
| Kennedy fresh waters | $\checkmark$ |  |  | $\checkmark$ |  | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  | $\checkmark$ |
| Shoteel Creek | $\checkmark$ |  |  |  |  | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  | $\checkmark$ |
| Bridle Creek | $\checkmark$ |  |  | $\checkmark$ |  | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  | $\checkmark$ |
| Reid Creek | $\checkmark$ |  |  |  |  | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  | $\checkmark$ |
| Freshwater Creek | $\checkmark$ |  |  |  |  | $\checkmark$ |
| Tinaroo Creek | $\checkmark$ |  |  | $\checkmark$ |  | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  | $\checkmark$ |
| Emerald Creek | $\checkmark$ |  |  | $\checkmark$ |  | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  | $\checkmark$ |
| Brindle Creek | $\checkmark$ |  |  | $\checkmark$ |  | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  | $\checkmark$ |


| Barron River basin (110) | Environmental values |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | $\rightarrow$ |  | 4 | 112 | (8) | 0110 | 0 | (1) | (0) | 5 | $\cdots$ | S\% |
| Davies Creek | $\checkmark$ |  |  | $\checkmark$ |  | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  | $\checkmark$ |
| Varch Creek | $\checkmark$ |  |  | $\checkmark$ |  | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  | $\checkmark$ |
| Rocky Creek | $\checkmark$ |  |  | $\checkmark$ |  |  |  |  |  |  |  | $\checkmark$ |
| Tolga | $\checkmark$ |  |  | $\checkmark$ |  | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  | $\checkmark$ |
| Mobo and Robson Creeks | $\checkmark$ |  |  |  |  | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |  | $\checkmark$ |
| Mazlin Creek | $\checkmark$ |  |  | $\checkmark$ |  | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  | $\checkmark$ |
| Morans, Poona and Carington Creeks | $\checkmark$ |  |  | $\checkmark$ |  | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  | $\checkmark$ |
| Gwynne Creek | $\checkmark$ |  |  |  |  | $\checkmark$ | $\checkmark$ |  | $\checkmark$ |  |  | $\checkmark$ |
| Peterson Creek - including Lake Eacham | $\checkmark$ | $\checkmark$ |  |  |  |  | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  | $\checkmark$ |
| Upper Barron River | $\checkmark$ |  |  | $\checkmark$ |  | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  | $\checkmark$ |
| Groundwaters | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |  |  |  |  | $\checkmark$ | $\checkmark$ | $\checkmark$ |



## Estuaries/bays, coastal and marine waters



## Notes:

1. $\checkmark$ means the EV is selected for protection.
2. Refer to the accompanying plans for the spatial locations of the EVs.
3. Blank indicates that the EV is not chosen for protection.
4. The selection of recreational EVs for waters does not mean that these waters are free of dangerous aquatic organisms, for example venomous organisms (e.g. marine stingers including box jellyfish, irukandji jellyfish), crocodiles, and sharks. Direct contact with dangerous aquatic organisms should be avoided. Refer to EHP CrocWatch, council, www.health.qld.gov.au, www.beachsafe.org.au, www.marinestingers.com.au and other information sources for further details on swimming safety and information on specific waters.

## Water quality objectives to protect environmental values

## 3 Water quality objectives to protect environmental values

This section provides WQOs to protect the EVs for the waters at Section 2.

- Section 3.1 information for reference to the State Planning Policy: state interest - water quality.
- Section 3.2 states the surface waters WQOs to protect the aquatic ecosystem EV.
- Section 3.3 states the surface waters WQOs to protect the human use EVs.
- Section 3.4 states the groundwater WQOs to protect the groundwater EVs.


### 3.1 State planning policy: state interest - water quality

The State Planning Policy (SPP) defines the Queensland Government's policies about matters of state interest in land use planning and development. (A state interest is defined under the Sustainable Planning Act 2009.)
Water quality is a state interest. The SPP (state interest - water quality) seeks to ensure that 'the environmental values and quality of Queensland waters are protected and enhanced'. It includes provisions relating to planning schemes, acid sulfate soils and water supply buffer areas.
The provisions of the SPP are operationalised through the SPP code - water quality (Appendix 3 of the SPP). The purpose of the code is to 'ensure development is planned, designed, constructed and operated to manage stormwater and wastewater in ways that support the protection of environmental values identified in the Environmental Protection (Water) Policy 2009'. The code contains detailed performance objectives for planning schemes, development and land use activities to implement the code's purpose. These include stormwater management design objectives by climatic region (construction and post-construction phases).
The SPP (state interest - water quality) is supported by the State Planning Policy-state interest guideline - water quality. The SPP (including SPP code) and supporting guideline are available from the DSDIP website.

### 3.2 Water quality objectives to protect aquatic ecosystems and human use environmental values

This section lists the WQOs for the various water types at the stated levels of protection to protect the aquatic ecosystems environmental values for the surface waters of the Barron River basin and adjacent coastal waters at Section 2.
Procedures for the application of WQOs for aquatic ecosystem protection, and compliance assessment protocols can be found in Section 5 and Appendix D of the QWQG. For the comparison of test site monitoring data against WQOs, the median water quality value (e.g. concentration) of a number (preferably five or more) of independent samples at a particular monitoring ('test') site should be compared against the water quality objective of the same indicator, water type and level of aquatic ecosystem protection, as listed in table 2 below. For WQOs based on GBRMPA data, where single value WQOs are given for specified indicators (e.g. particulate N, Secchi depth), these should be compared to annual mean (rather than median) values. Relevant seasonal adjustments can be referenced in GBRMPA (2010) Water quality guidelines for the Great Barrier Reef Marine Park 2010. Also refer to notes after the tables.
WQOs for metals and other toxicants in sediments, in all cases reference is made to the ANZECC guidelines.
WQOs for metals and other toxicants in waters, where not stated in this document, are referred to the ANZECC guidelines. In the case of aluminium, reference is made to a recent peer reviewed study of toxicity of aluminium in marine waters by Golding et al. (2014). This study used ANZECC protocols to derive a marine guideline value of $24 \mu \mathrm{~g} / \mathrm{L}$ of aluminium (that applies to the measured concentration in seawater that passes through an $0.45 \mu \mathrm{~m}$ filter) to protect $95 \%$ of species that applies to slightly to moderately disturbed waters, and $2.1 \mu \mathrm{~g} / \mathrm{L}$ to protect $99 \%$ of species which applies to HEV waters. This supersedes the existing low reliability guideline of $0.5 \mu \mathrm{~g} / \mathrm{L}$ that was derived using conservative safety margins from limited data.

- Golding, L.A., Angel, B.M., Batley, G.E., Apte, S.C., Krassoi, R. and Doyle, C.J. 2014. Derivation of a water quality guideline for aluminium in marine waters. Environmental Toxicology and Chemistry (Accepted) (DOI: 10.1002/etc.2771).


## Water quality objectives for surface waters to protect the aquatic ecosystem environmental values

### 3.2.1 Surface water quality objectives

Tables 2.1 to 2.4 include the following information for the surface waters of the various catchments and adjacent coastal waters:

- Water quality objectives for physico-chemical, nutrient, algal and water clarity indicators under baseflow conditions-Table 2.1.
- Water quality objectives for nutrients and suspended solids during high flow periods-Table 2.2.
- Water quality objectives for specific pesticides and biocides-Table 2.3.
- Water quality objectives for other ions, metals and chemical indicators in surface watersTable 2.4

Note: Event flow WQOs are provided in table 2.2. Unless otherwise stated all other WQOs provided are for application only during baseflow conditions.

Table 2.1 Water quality objectives for physico-chemical, nutrient, algal and water clarity indicators to protect the aquatic ecosystems EVs under baseflow conditions

| Level of protection | Water type | Water quality objectives |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Physico-chemical |  | Nutrients |  |  |  |  |  |  |  | Algal growth Chl-a | Water clarity |  |  |
|  |  | DO | pH | Ammonia $\mathrm{N}$ | Oxidised $\mathbf{N}$ | $\begin{gathered} \text { Particulate } \\ \mathrm{N} \end{gathered}$ | $\begin{gathered} \text { Organic } \\ \mathrm{N} \end{gathered}$ | Total N | FRP | $\begin{gathered} \text { Particulate } \\ \text { P } \end{gathered}$ | Total P |  | Turbidity | Secchi | TSS |
|  |  | \% Saturation |  | $\mu \mathrm{g} / \mathrm{L}$ |  |  |  |  |  |  |  |  | NTU | m | $\mathrm{mg} / \mathrm{L}$ |
| Table Notes |  | Water Quality Objectives shown as $20^{\text {th }}, 50^{\text {th }}$ and $80^{\text {th }}$ percentiles (i.e. 3-4-5) or as a single value of median or $80^{\text {th }}$ percentile (i.e. 15 ). DO and pH may be shown as a range of $20^{\text {th }}$ and $80^{\text {th }}$ percentiles (i.e. $85-105$ ). <br> Seagrass: Local seagrass distribution and composition is maintained as measured by extent of seagrass, species diversity and depth limit. Minimum light requirement for seagrass is a PAR two week moving average of greater than $6 \mathrm{~mol} \mathrm{~m}^{-2} \mathrm{day}^{-1}$. This is minimum requirement only for seagrass health and is generally below average harbour conditions. It does not include potential impacts on benthic microalgae and phytoplankton at this light level. Objective based on Chartrand et al. (2012) Development of a Light-Based Seagrass Management Approach for the Gladstone Western Basin Dredging Program. <br> Mangroves: Objective of no net loss of mangrove area. The Queensland Herbarium conducts biennial mapping of mangrove cover and this could be used as an assessment tool. Mapping is available from EHP. <br> Wetlands: for high impact earthworks within Great Barrier Reef wetland protection areas, refer to the guideline 'Protecting Wetlands of High Ecological Significance in Great Barrier Reef Catchments', and the Queensland wetland buffer planning guideline, available from the department's website. Also refer to Section 3.2.3. |  |  |  |  |  |  |  |  |  |  |  |  |  |
| High ecological value waters/ slightly disturbed waters | Undeveloped upland fresh water (HEV3021) | 90-95-100 ${ }^{1}$ | $\begin{gathered} 6-6.5- \\ 7.5^{1} \end{gathered}$ | $3-4-6^{1}$ | $\begin{gathered} 10-15- \\ 30^{1} \end{gathered}$ | nd | $\begin{gathered} 75-100- \\ 125^{1} \end{gathered}$ | $\begin{gathered} 90-120- \\ 150^{1} \end{gathered}$ | $\begin{gathered} 3-4- \\ 5^{1} \end{gathered}$ | nd | 5-7-10 ${ }^{1}$ | <0.5 ${ }^{1}$ | <1-2-5 ${ }^{1}$ | nd | $2^{3}$ |
|  | Undeveloped lowland fresh water (HEV3021/ SD3021) | $85-120^{1}$ | $6.0-8.0^{1}$ | $10^{1}$ | $30^{1}$ | nd | $200{ }^{1}$ | $240^{1}$ | $4^{1}$ | nd | $10^{1}$ | $1.5^{1}$ | $15^{1}$ | nd | $2^{3}$ |
|  | ```Freshwater lakes/ reservoirs (HEV3021/ SD3021)``` | 90-120 ${ }^{1}$ | $6.0-8.0^{1}$ | $10^{1}$ | $10^{1}$ | nd | $330^{1}$ | $350{ }^{1}$ | $5^{1}$ | nd | $10^{1}$ | $3^{1}$ | 2-200 ${ }^{1}$ | nd | nd |
|  | $\begin{aligned} & \text { Wetlands } \\ & \text { (HEV3021/ } \\ & \text { SD3021) } \\ & \hline \end{aligned}$ | 90-120 ${ }^{1}$ | $6.0-8.0^{1}$ | $10^{1}$ | $10^{1}$ | nd | $\begin{gathered} 330- \\ 1180^{1} \end{gathered}$ | $350-1200{ }^{1}$ | 5-25 ${ }^{1}$ | nd | $10-50^{1}$ | $10^{1}$ | 2-200 ${ }^{1}$ | nd | nd |
|  | Mid estuarine and tidal canals, constructed estuaries, marinas and boat harbours (SD3021) | 80-85-105 ${ }^{1}$ | $\begin{gathered} 6.5-7.3- \\ 8.4^{1} \end{gathered}$ | 5-10-15 ${ }^{1}$ | $2-15-30^{1}$ | nd | $\begin{aligned} & 100-100- \\ & 200^{1} \end{aligned}$ | $\begin{gathered} 110-130- \\ 250^{1} \end{gathered}$ | $\begin{gathered} 2-3- \\ 5^{1} \end{gathered}$ | nd | $\begin{gathered} 10-15- \\ 20^{1} \end{gathered}$ | $1-2-3^{1}$ | $2-5-10^{1}$ | $\begin{gathered} 1-1.5- \\ 2^{1} \end{gathered}$ | nd |


| Level of protection | Water type | Water quality objectives |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Physico-chemical |  | Nutrients |  |  |  |  |  |  |  | Algal growth Chl-a | Water clarity |  |  |
|  |  | DO | pH | Ammonia N | Oxidised N | Particulate N | $\begin{gathered} \text { Organic } \\ N \end{gathered}$ | Total N | FRP | Particulate P | Total P |  | Turbidity | Secchi | TSS |
|  |  | \% Saturation |  | $\mu \mathrm{g} / \mathrm{L}$ |  |  |  |  |  |  |  |  | NTU | m | mg/L |
| ```High ecological value waters/ slightly disturbed waters``` | Enclosed coastal/lower estuary (SD3021/ SD3121) | 85-105 ${ }^{1}$ | 7.5-8.4 ${ }^{1}$ | $15^{1}$ | $10^{1}$ | nd | $135^{1}$ | $160{ }^{1}$ | $5^{1}$ | nd | $20^{1}$ | $2.0^{1}$ | $10^{1}$ | $1^{1}$ | nd |
|  | $\begin{gathered} \text { Open coastal²} \\ \text { (HEV3121/ } \\ \text { SD3121) } \end{gathered}$ | 95-100-105 ${ }^{2}$ | $\begin{gathered} 8.1-8.3- \\ 8.4^{2} \end{gathered}$ | $1-3-7^{2}$ | $0-0-1^{2}$ | $\begin{gathered} \leq 20^{2} \\ \text { (annual } \\ \text { mean) } \end{gathered}$ | nd | $\begin{gathered} 75-105- \\ 140^{2} \end{gathered}$ | $\begin{gathered} 0-2- \\ 3^{2} \end{gathered}$ | $\begin{gathered} \leq 2.8^{2} \\ \text { (annual } \\ \text { mean) } \\ \hline \end{gathered}$ | $\begin{gathered} 8-14- \\ 20^{2} \end{gathered}$ | $\begin{gathered} <0.45^{2} \\ \text { (annual } \\ \text { mean) } \\ \hline \end{gathered}$ | 0.6-0.9-1.8 ${ }^{2}$ | $\begin{gathered} \geq 10^{2} \\ \text { (annual } \\ \text { mean) } \end{gathered}$ | $\leq 2^{2}$ <br> (annual mean) |
|  |  | Total dissolved N: 55-80-110 $\mu \mathrm{g} / \mathrm{L}$ <br> Total dissolved P: 4-8-18 $\mu \mathrm{g} / \mathrm{L}$ <br> Silicate: 90-165-260 $\mu \mathrm{g} / \mathrm{L}$ <br> Temperature: $<1^{\circ} \mathrm{C}$ increase above long term (20 year) average maximum |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Offshore waters ${ }^{2}$ (HEV3122) | 95-105 ${ }^{2}$ | $\begin{gathered} 8.1-8.3- \\ 8.4^{2} \end{gathered}$ | 1-4-10 ${ }^{2}$ | 0-1-2 ${ }^{2}$ | $10-13-17^{2}$ | nd | 70-95-120 ${ }^{2}$ | $\begin{gathered} 0-1- \\ 3^{2} \end{gathered}$ | 1.2-1.9-2.5 ${ }^{2}$ | 4-6-10 ${ }^{2}$ | $\begin{gathered} 0.2-0.3- \\ 0.5^{2} \end{gathered}$ | $<1^{2}$ | $\begin{gathered} 10-13- \\ 16^{2} \end{gathered}$ | $\begin{gathered} 0.3-0.6- \\ 1.0^{2} \end{gathered}$ |
|  |  | Total dissolved $\mathrm{N}: 55-75-95 \mu \mathrm{~g} / \mathrm{L}$ <br> Total dissolved P: 2-4-8 $\mu \mathrm{g} / \mathrm{L}$ <br> Silicate: 30-50-105 $\mu \mathrm{g} / \mathrm{L}$ <br> Temperature: $<1^{\circ} \mathrm{C}$ increase above long term (20 year) average maximum |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Moderately disturbed waters | All developed fresh waters | $85-120^{1}$ | 6.0-8.0 ${ }^{1}$ | $<10^{3}$ | $<50{ }^{3}$ | nd | nd | $<340^{3}$ | $<8^{3}$ | nd | <25 ${ }^{3}$ | <1.5 ${ }^{1}$ | $<15^{1}$ | nd | $<8^{3}$ |
|  | Freshwater lakes/ reservoirs | 90-120 ${ }^{1}$ | $6.0-8.0^{1}$ | $<10^{1}$ | $<10^{1}$ | nd | <330 ${ }^{1}$ | <350 ${ }^{1}$ | $<5^{1}$ | nd | $<10^{1}$ | $<3^{1}$ | 2-200 ${ }^{1}$ | nd | nd |
|  | Wetlands | 90-120 ${ }^{1}$ | $6.0-8.0^{1}$ | $<10^{1}$ | $<10^{1}$ | nd | $\begin{aligned} & 330- \\ & 1180^{11} \end{aligned}$ | $350-1200^{1}$ | 5-25 ${ }^{1}$ | nd | 10-50 ${ }^{1}$ | $<10^{1}$ | 2-200 ${ }^{1}$ | nd | nd |
|  | Mid estuarine and tidal canals, constructed estuaries, marinas and boat harbours | 80-105 ${ }^{1}$ | 6.5-8.4 ${ }^{1}$ | $<15^{1}$ | $<30^{1}$ | nd | <200 ${ }^{1}$ | $<250{ }^{1}$ | $<5^{1}$ | nd | <20 ${ }^{1}$ | $<3^{1}$ | $<10^{1}$ | $>1^{1}$ | $n d^{1}$ |
|  | Enclosed coastal/lower estuary | 85-105 ${ }^{1}$ | 6.5-8.4 ${ }^{1}$ | <15 ${ }^{1}$ | $<10^{1}$ | nd | $<135^{1}$ | $<160{ }^{1}$ | $<5^{1}$ | nd | <20 ${ }^{1}$ | $<2^{1}$ | $<10^{1}$ | $>1^{1}$ | $n d^{1}$ |


| Level of protection | Water type | Water quality objectives |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Physico-chemical |  | Nutrients |  |  |  |  |  |  |  | Algal <br> growth <br> Chl-a | Water clarity |  |  |
|  |  | DO | pH | Ammonia N | Oxidised N | Particulate N | $\begin{aligned} & \text { Organic } \\ & \mathrm{N} \end{aligned}$ | Total N | FRP | Particulate P | Total P |  | Turbidity | Secchi | TSS |
|  |  | \% Saturation |  | $\mu \mathrm{g} / \mathrm{L}$ |  |  |  |  |  |  |  |  | NTU | m | $\mathrm{mg} / \mathrm{L}$ |
| Slightly moderately disturbed waters | Open coastal ${ }^{2}$ | 95-105 ${ }^{2}$ | 8.1-8.4 ${ }^{2}$ | $\leq 3^{2}$ | $\leq 1^{2}$ | $\begin{gathered} \hline \leq 20^{2} \\ \text { (annual } \\ \text { mean) } \\ \hline \end{gathered}$ | nd | $\leq 105^{2}$ | $\leq 2^{2}$ | $\begin{gathered} \hline \leq 2.8^{2} \\ \text { (annual } \\ \text { mean) } \\ \hline \end{gathered}$ | $\leq 14^{2}$ | $\begin{gathered} \leq 0.45^{2} \\ \text { (annual } \\ \text { mean) } \\ \hline \end{gathered}$ | $\leq 1^{2}$ |  |  |
|  |  | ```Total dissolved \(\mathrm{N}: \leq 80 \mu \mathrm{~g} / \mathrm{L}\) Total dissolved P: \(\leq 8 \mu \mathrm{~g} / \mathrm{L}\) Silicate: \(\geq 165 \mu \mathrm{~g} / \mathrm{L}\) Temperature: \(<1^{\circ} \mathrm{C}\) increase above long term (20 year) average maximum``` |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Highly disturbed waters (long term objectives) | Developed fresh water (HD3021) | Assess existing water quality at the highly disturbed test site. Initial objective is to ensure no deterioration from this. Long-term objective is to attain the moderately disturbed objective value. Intermediate objectives can be set based on (a) $95 \%$ ile of reference values from a slightly disturbed reference site or (b) on references values from another site that is highly disturbed but that is nevertheless in measurably better condition than the test site ${ }^{1}$. |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | $85-120^{1}$ | >6.0 ${ }^{1}$ | $10^{3}$ | $50^{3}$ | nd | nd | $340^{3}$ | $8^{3}$ | nd | $25^{3}$ | $1.5^{1}$ | $15^{1}$ | nd | $8^{3}$ |
|  | Mid estuarine and tidal canals, constructed estuaries, marinas and boat harbours (HD3021) | 80-105 ${ }^{1}$ | >6.5 ${ }^{1}$ | $15^{1}$ | $30^{1}$ | nd | $200{ }^{1}$ | $250{ }^{1}$ | $5^{1}$ | nd | $20^{1}$ | $3^{1}$ | $10^{1}$ | $1^{1}$ | nd |

## Notes:

- DO: dissolved oxygen, FRP: filterable reactive phosphorus, Chl-a: chlorophyll-a, TSS: total suspended solids. nd: no (or insufficient) data.
- Units \% saturation: percent saturation, $\mu \mathrm{g} / \mathrm{L}$ : micrograms per litre, NTU: nephelometric turbidity units, m: metres, mg/L: milligrams per litre.

Sources:

1. Queensland Water Quality Guidelines 2009.
2. GBRMPA analysis of Reef Rescue Marine Monitoring Program and/or Long Term Monitoring Program datasets.
3. Analysis of DSITIA water quality monitoring data and Great Barrier Reef Catchment Loads Monitoring Program.

Table 2.2 Water quality objectives for nutrients and suspended solids to protect aquatic ecosystem EVs during high flow periods

| Water quality objectives | Ammonia N | Oxidised N | Particulate N | DON | TN | FRP | Particulate P | DOP | TP | TSS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Units | $\mu \mathrm{g} / \mathrm{L}$ |  |  |  |  |  |  |  |  | mg/L |
|  | WQOs apply to all fresh waters during high flow periods where discharge is above local baseflow. |  |  |  |  |  |  |  |  |  |
| $20^{\text {th }}-50^{\text {th }}-80^{\text {th }}$ percentiles | 4-8-13 | 5-66-101 | 50-153-384 | 72-106-148 | 229-370-668 | 1-3-4 | 5-10-45 | 5-5-10 | 10-20-70 | 4-20-52 |

## Notes:

1. High flow WQOs are based on measured data from high flow periods at a reference site on the Tully River in Tully Gorge National Park (gauging station 113015A).
2. DON: dissolved organic nitrogen, TN: total nitrogen, FRP: filterable reactive phosphorous, DOP: dissolved organic phosphorous, TP: total phosphorous, TSS: total suspended solids.

## Source:

Orr, D., Turner, R.D.R., Huggins, R., Vardy, S., Warne, M. St. J. 2014. Wet Tropics water quality statistics for high and base flow conditions. Great Barrier Reef Catchment Loads Monitoring Program, Department of Science, Information Technology, Innovation and the Arts, Brisbane.

Table 2.3 Water quality objectives for specific pesticides and biocides to protect aquatic ecosystem EVs

| Level of aquatic ecosystems protection | Water quality objectives |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Water type | Pesticides |  |  |  |  |  |  |  |  |  |  | Biocide |
|  |  | Diuron | Atrazine | Chlorpyrifos | Endosulfan | Ametryn | Simazine | Hexazinone | 2,4-D | Tebuthiuron | MEMC | Diazinon | Tributlyltin (as Sn ) |
|  |  | $\mu \mathrm{g} / \mathrm{l}$ |  |  |  |  |  |  |  |  |  |  |  |
| High ecological value waters | All <br> (HEV3021/ <br> HEV3121/ <br> HEV3122) | No detection of anthropogenic toxicants |  |  |  |  |  |  |  |  |  |  |  |
| Slightly disturbed waters | Undeveloped fresh water <br> (SD3021) | nd | 0.7 | 0.00004 | 0.03 | nd | 0.2 | 75 | 140 | 0.2 | nd | 0.00003 | nd |
|  | Freshwater lakes/reservoirs | nd | 0.7 | 0.00004 | 0.03 | nd | 0.2 | 75 | 140 | 0.2 | nd | 0.00003 | nd |
|  | Wetlands (SD3021) | nd | 0.7 | 0.00004 | 0.03 | nd | 0.2 | 75 | 140 | 0.2 | nd | 0.00003 | nd |
|  | Mid estuarine and tidal canals, constructed estuaries, marinas and boat harbours (SD3021) | nd | 0.7 | 0.00004 | 0.03 | nd | 0.2 | 75 | 140 | 0.2 | nd | 0.00003 | nd |
|  | $\begin{gathered} \text { Enclosed } \\ \text { coastal/lower } \\ \text { estuary } \\ \text { (SD3021/ } \\ \text { SD3121) } \end{gathered}$ | 0.9 | 0.6 | 0.0005 | 0.005 | 0.5 | 0.2 | 1.2 | 0.8 | 0.02 | 0.002 | 0.00003 | 0.0004 |
|  | Open coastal (SD3121) | 0.9 | 0.6 | 0.0005 | 0.005 | 0.5 | 0.2 | 1.2 | 0.8 | 0.02 | 0.002 | 0.00003 | 0.0004 |


| Level of aquatic ecosystems protection | Water quality objectives |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Water type | Pesticides |  |  |  |  |  |  |  |  |  |  | Biocide |
|  |  | Diuron | Atrazine | Chlorpyrifos | Endosulfan | Ametryn | Simazine | Hexazinone | 2,4-D | Tebuthiuron | MEMC | Diazinon | Tributlyltin (as $\mathbf{S n}$ ) |
|  |  | $\mu \mathrm{g} / \mathrm{l}$ |  |  |  |  |  |  |  |  |  |  |  |
| Moderately disturbed and highly disturbed waters | Developed fresh water <br> (HD3021) | nd | 13 | 0.01 | 0.03 | nd | 3.2 | 75 | 280 | 2.2 | nd | 0.01 | nd |
|  | Freshwater lakes/reservoirs | nd | 13 | 0.01 | 0.03 | nd | 3.2 | 75 | 280 | 2.2 | nd | 0.01 | nd |
|  | Wetlands | nd | 13 | 0.010 | 0.03 | nd | 3.2 | 75 | 280 | 2.2 | nd | 0.01 | nd |
|  | Mid estuarine and tidal canals, constructed estuaries, marinas and boat harbours (HD3021) | nd | 13 | 0.01 | 0.03 | nd | 3.2 | 75 | 280 | 2.2 | nd | 0.01 | nd |
|  | Enclosed coastal/lower estuary | 1.6 | 1.4 | 0.009 | 0.005 | 1.0 | 3.2 | 1.2 | 30.8 | 2 | 0.002 | 0.01 | 0.006 |
|  | Open coastal | 1.6 | 1.4 | 0.009 | 0.005 | 1.0 | 3.2 | 1.2 | 30.8 | 2 | 0.002 | 0.01 | 0.006 |

## Notes:

1. $\mathrm{nd}=\mathrm{no}$ data
2. For all other contaminants in waters, including metals-see ANZECC guidelines. For aluminium, refer to: Golding, L.A., Angel, B.M., Batley, G.E., Apte, S.C., Krassoi, R. and Doyle, C.J. 2014. Derivation of a water quality guideline for aluminium in marine waters. Environmental Toxicology and Chemistry (Accepted) (DOI: 10.1002/etc.2771).
3. Comply with the Code of Practice for Antifouling and In-water Hull Cleaning and Maintenance, ANZECC (Re Tributyltin and Dibutyltin)

## Source:

Freshwater and Mid estuarine WQOs derived from ANZECC (2000). Enclosed coastal/Lower estuary and Open coastal WQOs derived from GBRMPA (2010).

Table 2.4 Water quality objectives for other ions, metals and chemical indicators in surface waters

| Percentile | $\begin{gathered} \mathrm{Na} \\ \stackrel{\mathrm{I}}{\mathrm{I}} \\ \dot{\mathrm{E}} \end{gathered}$ | \% | $\begin{gathered} \mathbf{C a} \\ \text { בי } \\ \text { 으́ } \end{gathered}$ | \% |  | \% |  |  |  | \% |  | \% | $\begin{aligned} & \text { EC } \\ & \xi_{0}^{-} \\ & \dot{\Xi} \end{aligned}$ |  |  |  |  | $\begin{aligned} & \bar{\beth} \\ & \text { ס } \\ & \underline{\Xi} \\ & \text { ㅇ } \end{aligned}$ |  |  | $\begin{aligned} & \bar{J} \\ & \text { © } \\ & \text { B } \end{aligned}$ | ¢ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 20th | 5 | 40 | 2 | 16 | 1 | 17 | 14 | 47 | 6 | 28 | 1 | 2 | 47 | 8 | 11 | 10.1 | 0.010 | 0.010 | 0.000 | 0.000 | 0.00 | 0.60 |
| 50th | 7 | 51 | 3 | 22 | 2 | 26 | 25 | 59 | 9 | 36 | 1 | 3 | 72 | 17 | 20 | 14.1 | 0.060 | 0.050 | 0.000 | 0.010 | 0.01 | 0.70 |
| 80th | 11 | 66 | 5 | 28 | 4 | 34 | 40 | 68 | 14 | 48 | 2 | 6 | 106 | 29 | 33 | 21.1 | 0.110 | 0.200 | 0.010 | 0.020 | 0.03 | 0.95 |

## Note:

1. These values are based on local data collected across the Wet Tropics region. ANZECC guidelines apply for some elements, however these locally observed data are below the guideline values and should be maintained.
2. $\mathrm{EC}=$ electrical conductivity; $\mathrm{SAR}=$ sodium adsorption ratio.

## Source:

Queensland Wet Tropics and Black and Ross catchments: Regional chemistry of the groundwater. Queensland Government (Raymond, M. A. A. and V. H. McNeil, 2013).

### 3.2.2 Riparian and groundcover water quality objectives

The clearing of native vegetation in Queensland is regulated by the Vegetation Management Act 1999 the Sustainable Planning Act 2009 and associated policies and codes. This includes the regulation of clearing in water and drainage lines.

For vegetation management relating to waterways, reference should be made to:

- State Development Assessment Provisions (SDAP) Module 8: Native vegetation clearing. This module includes performance requirements relating to clearing of native vegetation and a table relating to watercourse buffer areas and stream order. To review the SDAP Modules, contact the Department of State Development, Infrastructure and Planning website.
- SDAP Module 11: Wetland protection area.
- relevant self-assessable codes under the Vegetation Management Act 1999. These codes are activity based, some applying to different regions, and include performance requirements relating to watercourses and wetlands, aimed at maintaining water quality, bank stability, aquatic and terrestrial habitat. Codes include vegetation clearing controls that vary according to stream order. To review the latest applicable self-assessable code (and other explanatory information), contact the Department of Natural Resources and Mines website.
To review the current vegetation management laws contact the Queensland Government website or Department of Natural Resources and Mines website.
To review the SDAP Modules, contact the Department of State Development, Infrastructure and Planning website.
Local Government Planning schemes under the Sustainable Planning Act 2009 may also specify riparian buffers (for example under catchment protection or waterway codes). Contact the Department of State Development, Infrastructure and Planning website and local government websites for further information about planning schemes.
The riparian vegetation target up to 2018 in the Reef Water Quality Protection Plan (Reef Plan) 2013 is that "The extent of riparian vegetation is increased" and the groundcover target is for a "Minimum 70 per cent late dry season groundcover on grazing lands".


### 3.2.3 Wetlands water quality objectives

The Environmental Protection Regulation section 81A defines Environmental values for wetlands.
The State assesses impacts from earth works that may have impacts on freshwater wetlands of High Ecological Significance in Great Barrier Reef Catchments against State Development Assessment Provisions (SDAP) Module 11: Wetland protection area.
This module includes performance requirements to ensure:

- adverse effects on hydrology, water quality and ecological processes of a wetland are avoided or minimised
- any significant adverse impacts on matters of state environmental significance and on riparian areas or wildlife corridors in strategic environmental areas are avoided.
Note: refer to the guideline 'Protecting Wetlands of High Ecological Significance in Great Barrier Reef Catchments', and the Queensland wetland buffer planning guideline, available from the department's website.


## Water quality objectives to protect the human use environmental values

### 3.3 Water quality objectives for human use environmental values

This section outlines the WQOs to protect human use EVs, e.g. recreation, stock watering, aquaculture and crop irrigation. Tables 3.1 to 3.10 list the WQOs to protect the human use EVs for the waters of the Barron River basin and adjacent coastal waters.
The WQOs in these tables are based on national water quality guidelines, including ANZECC (2000), the National Health and Medical Research Council Guidelines for managing risks in recreational water, the Food Standards Australia New Zealand and the Australian Drinking Water Guidelines ${ }^{5}$.
Where national guidelines are the source for the stated WQOs, reference is necessary to obtain comprehensive listings of all indicators, corresponding WQOs and up-to-date information.
Table 3.1 Water quality objectives to protect human use environmental values

| Environmental <br> value | Water type- <br> refer attached <br> pdf mapping or <br> GIS datasets | Water quality objectives to protect the stated EV |
| :--- | :--- | :--- |
| Suitability for raw <br> drinking water <br> supply (before <br> treatment) | Fresh waters <br> and <br> groundwaters | WQOs for drinking water supply are at table 3.2. <br> Note: For water quality after treatment or at point of use refer to <br> legislation and guidelines, including: <br> - Public Health Act 2005 and Regulations <br> - Water Supply (Safety and Reliability) Act 2008, including any <br> approved drinking water quality management plan under the Act <br> -Australian Drinking Water Guidelines 2011-updated December 2013 |
| Protection of the <br> human consumer <br> (oysters, fish <br> crustaceans) | All fresh, <br> estuarine and <br> coastal waters | WQOs as per ANZECC guidelines and Australia New Zealand Food <br> Standards Code 6 , Food Standards Australia New Zealand, 2007 and <br> updates. |
| Protection of <br> cultural and <br> spiritual values | All waters | Protect or restore indigenous and non-indigenous cultural heritage <br> consistent with any relevant policies and plans. |
| Suitability for <br> industrial use <br> (includes mining, <br> minerals <br> processing, <br> chemical process <br> industries etc.) | Fresh waters, <br> estuarine and <br> coastal waters | No WQOs are stated for industrial uses of water. Water quality <br> requirements for industry vary within and between industries. <br> Where there are specific intake water quality requirements e.g. power <br> station cooling water, the EV is protected by WQOs for other EVs, such <br> as the aquatic ecosystem requirements. |

[^3]| Environmental value | Water typerefer attached pdf mapping or GIS datasets | Water quality objectives to protect the stated EV |
| :---: | :---: | :---: |
| Suitability for aquaculture | Fresh waters, estuarine and coastal waters | WQOs as per: <br> - tables 3.3 to 3.5 <br> - ANZECC guidelines and Australia New Zealand Food Standards Code, Food Standards Australia New Zealand, 2007 and updates. |
| Suitability for irrigation | Fresh waters and groundwaters | WQOs for pathogens and metals are provided in tables 3.6 and 3.7. For other indicators, such as salinity, sodicity and herbicides, see ANZECC guidelines |
| Suitability for stock watering | Fresh waters and groundwaters | WQOs as per ANZECC guidelines, including median faecal coliforms $<100$ organisms per 100 mL . <br> WQOs for total dissolved solids and metals are provided in tables 10 and 11. <br> For other objectives, such as cyanobacteria and pathogens, see ANZECC guidelines. |
| Suitability for farm supply/use | All fresh waters including groundwaters | WQOs as per ANZECC guidelines |
| Suitability for primary contact recreation | Fresh waters, estuarine and coastal waters | Objectives as per NHMRC (2008) ${ }^{7}$, including: <br> - water free of physical (floating and submerged) hazards <br> - temperature range: $16-34^{\circ} \mathrm{C}$ <br> - pH range: 6.5-8.5 <br> - DO: >80\% <br> - faecal contamination: designated recreational waters are protected against direct contamination with fresh faecal material, particularly of human or domesticated animal origin. Two principal components are required for assessing faecal contamination: <br> - assessment of evidence for the likely influence of faecal material <br> - counts of suitable faecal indicator bacteria (usually enterococci) <br> These two components are combined to produce an overall microbial classification of the recreational water body. <br> - intestinal enterococci: 95th percentile $\leq 40$ organisms per 100 mL (for healthy adults) (NHMRC, 2008; table 5.7) <br> - direct contact with venomous or dangerous aquatic organisms should be avoided. Recreational water bodies should be reasonably free of, or protected from, venomous organisms (e.g. box jellyfish and bluebottles) <br> - waters contaminated with chemicals that are either toxic or irritating to the skin or mucous membranes are unsuitable for recreational purposes. |

[^4]| Environmental value | Water typerefer attached pdf mapping or GIS datasets | Water quality objectives to protect the stated EV |
| :---: | :---: | :---: |
| Suitability for primary contact recreation continued | Fresh waters | - cyanobacteria / algae: Recreational water bodies should not contain: <br> - level $1^{1}: \geq 10 \mu \mathrm{~g} / \mathrm{L}$ total microcystins; or $\geq 50000$ cells $/ \mathrm{mL}$ toxic Microcystis aeruginosa; or biovolume equivalent of $\geq 4 \mathrm{~mm}^{3} / \mathrm{L}$ for the combined total of all cyanobacteria where a known toxin producer is dominant in the total biovolume or <br> - level $2^{1}: \geq 10 \mathrm{~mm}^{3} / \mathrm{L}$ for total biovolume of all cyanobacterial material where known toxins are not present <br> or <br> - cyanobacterial scums consistently present. Further details are contained in NHMRC (2008) and table 3.10. |
|  | Estuarine, coastal waters | cyanobacteria / algae: Recreational water bodies should not contain $\geq 10$ cells/mL Karenia brevis and/or have Lyngbya majuscula and/or Pfiesteria present in high numbers ${ }^{2}$. Further details are contained in NHMRC (2008) and table 3.10. |
| Suitability for secondary contact recreation | Fresh waters, estuarine and coastal waters | Objectives as per NHMRC (2008), including: <br> - intestinal enterococci: 95th percentile $\leq 40$ organisms per 100 mL (for healthy adults) (NHMRC, 2008; table 5.7) <br> - cyanobacteria / algae-refer objectives for primary recreation, NHMRC (2008) and table 3.10. |
| Suitability for visual recreation | Fresh waters, estuarine and coastal waters | Objectives as per NHMRC (2008), including: <br> - recreational water bodies should be aesthetically acceptable to recreational users. The water should be free from visible materials that may settle to form objectionable deposits; floating debris, oil, scum and other matter; substances producing objectionable colour, odour, taste or turbidity; and substances and conditions that produce undesirable aquatic life. <br> - Cyanobacteria / algae-refer objectives for primary recreation, NHMRC (2008) and table 3.10 |

## Notes:

1. Level 1 recognises the probability of adverse health effects from ingestion of known toxins, in this case based on the toxicity of microcystins. Level 2 covers circumstances in which there are very high cell densities of cyanobacterial material, irrespective of the presence of toxicity or known toxins. Increased cyanobacterial densities increase the likelihood of non-specific adverse health outcomes, principally respiratory, irritation and allergy symptoms. (NHMRC, 2008; 8).
2. The NHMRC states that its guidelines are concerned 'only with risks that may be associated with recreational activities in or near coastal and estuarine waters. This includes exposure through dermal contact, inhalation of sea-spray aerosols and possible ingestion of water or algal scums, but does not include dietary exposure to marine algal toxins.' (NHMRC, 2008; 121).

## Sources:

The WQOs were determined from:

- Australian Drinking Water Guidelines (NHMRC, 2011)
- Australia New Zealand Food Standards Code (Australian Government)
- Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZECC \& ARMCANZ, 2000)
- Guidelines for Managing Risks in Recreational Water (NHMRC, 2008).


## Table 3.2 Drinking water EV - Water quality objectives for raw drinking water supply in the vicinity of off-takes, including groundwater, before treatment

WQOs for drinking water before treatment are derived from the Office of the Water Supply Regulator (Department of Energy and Water Supply) and Queensland Health.
Note: For water quality after treatment or at the point of use, refer to relevant legislation and guidelines, including Public Health Act 2005 and Regulations, Water Supply (Safety and Reliability) Act 2008, including any approved drinking water management plan under the Act, Water Fluoridation Act 2008, and the Australian Drinking Water Guidelines (ADWG (2011), 2013 update).

| Indicator | Water quality objective |
| :---: | :---: |
| Giardia | 0 cysts (Office of Water Supply Regulator) <br> If Giardia is detected in drinking water then the health authorities should be notified immediately and an investigation of the likely source of contamination undertaken (ADWG). |
| Cryptosporidium | 0 cysts (Office of Water Supply Regulator) <br> If Cryptosporidium is detected in drinking water then the health authorities should be notified immediately and an investigation of the likely source of contamination undertaken (ADWG). |
| E. coli | $<50 \mathrm{cfu} / 100 \mathrm{~mL}$ <br> Treatment plants with effective barriers and disinfection are designed to address faecal contamination. <br> E. coli or thermotolerant coliforms should not be present in any 100 mL sample of (treated) drinking water (ADWG). |
| Blue-green algae (cyanobacteria) | <100 cells/mL |
| Algal toxin | <1 $\mu \mathrm{g} / \mathrm{L}$ Microcystin |
| pH | 5.5-8 |
| Total dissolved solids | <600mg/L <br> The concentration of total dissolved solids in treated drinking water should not exceed $600 \mathrm{mg} / \mathrm{L}$ (ADWG 2011, based on taste considerations). |
| Sodium | $<180 \mathrm{mg} / \mathrm{L}$ <br> The concentration of sodium in reticulated drinking water supplies should not exceed 180 $\mathrm{mg} / \mathrm{L}$ (ADWG, based on threshold at which taste becomes appreciable). |
| Sulfate | <250mg/L <br> The concentration of sulfate in drinking water should not exceed $250 \mathrm{mg} / \mathrm{L}$ (ADWG 2011, based on taste/aesthetic considerations). <br> ADWG 2011 health guideline: $<500 \mathrm{mg} / \mathrm{L}$ |
| Dissolved oxygen | $5.5-7 \mathrm{mg} / \mathrm{L}$ |


| Indicator | Water quality objective |
| :--- | :--- |
| Pesticides | Raw supplies: Below detectable limits. <br> Treated drinking water: Refer to ADWG. |
| Other indicators (including <br> physico-chemical indicators) | Refer to ADWG. |

Table 3.3 Aquaculture EV - Water quality objectives for tropical aquaculture

| Water parameter | Recommended range |  | Water parameter | Recommended range |
| :---: | :---: | :---: | :---: | :---: |
|  | Fresh water | Marine |  | General aquatic |
| Dissolved oxygen | >4 mg/L | >4 mg/L | Arsenic | $<0.05 \mathrm{mg} / \mathrm{L}$ |
| Temperature ${ }^{\circ} \mathrm{C}$ | 21-32 | 24-33 | Cadmium | <0.003 mg/L |
| pH | 6.8-9.5 | 7-9.0 | Calcium/Magnesium | 10-160 mg/L |
| Ammonia (TAN, total ammonianitrogen) | $<1.0 \mathrm{mg} / \mathrm{L}$ | $<1.0 \mathrm{mg} / \mathrm{L}$ | Chromium | $<0.1 \mathrm{mg} / \mathrm{L}$ |
| Ammonia ( $\mathrm{NH}_{3}$, un-ionised form) | $<0.1 \mathrm{mg} / \mathrm{L}$ | <0.1 mg/L | Copper | $<0.006 \mathrm{mg} / \mathrm{L}$ in soft water |
| Nitrate ( $\mathrm{NO}_{3}$ ) | $1-100 \mathrm{mg} / \mathrm{L}$ | $1-100 \mathrm{mg} / \mathrm{L}$ | Cyanide | $<0.005 \mathrm{mg} / \mathrm{L}$ |
| Nitrite ( $\mathrm{NO}_{2}$ ) | $<0.1 \mathrm{mg} / \mathrm{L}$ | $<1.0 \mathrm{mg} / \mathrm{L}$ | Iron | $<0.5 \mathrm{mg} / \mathrm{L}$ |
| Salinity | 0-5 ppt | 15-35 ppt | Lead | $<0.03 \mathrm{mg} / \mathrm{L}$ |
| Hardness | 20-450 mg/L |  | Manganese | $<0.01 \mathrm{mg} / \mathrm{L}$ |
| Alkalinity | 20-400 mg/L | >100mg/L | Mercury | < $0.00005 \mathrm{mg} / \mathrm{L}$ |
| Turbidity | <80 NTU |  | Nickel | $<0.01 \mathrm{mg} / \mathrm{L}$ in soft water $<0.04$ $\mathrm{mg} / \mathrm{L}$ in hard water |
| Chlorine | $<0.003 \mathrm{mg} / \mathrm{L}$ |  | Tin | $<0.001 \mathrm{mg} / \mathrm{L}$ |
| Hydrogen sulphide | $<0.002 \mathrm{mg} / \mathrm{L}$ |  | Zinc | $0.03-0.06 \mathrm{mg} / \mathrm{L}$ in soft water $1-2 \mathrm{mg} / \mathrm{L}$ in hard water |

Source: Department of Primary Industries and Fisheries: Water Quality in Aquaculture—DPI Notes April 2004.

Table 3.4 Aquaculture EV - Water quality objectives for optimal growth of freshwater species

| Water parameter | Barramundi | Eel | Silver perch | Jade perch | Sleepy cod | Redclaw |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Dissolved oxygen | $4-9 \mathrm{mg} / \mathrm{L}$ | >3 mg/L | >4 mg/L | >3 mg/L | >4.0 mg/L | >4.0 mg/L |
| Temperature ${ }^{\circ} \mathrm{C}$ | 26-32 | 23-28 | 23-28 | 23-28 | 22-31 | 23-31 |
| pH | 7.5-8.5 | 7.0-8.5 | 6.5-9 | 6.5-9 | 7.0-8.5 | 7.0-8.5 |
| Ammonia (TAN, Total ammonianitrogen) |  | $<1.0$ mg/L |  |  | $<1.0 \mathrm{mg} / \mathrm{L}$ | $<1.0 \mathrm{mg} / \mathrm{L}$ |
| Ammonia ( $\mathbf{N H}_{3}$, unionised form)* pH dependent. | <0.46 mg/L | $<0.1 \mathrm{mg} / \mathrm{L}$ |
| Nitrate ( $\mathrm{NO}_{3}$ ) |  |  | <100 mg/L |  |  |  |
| Nitrite ( $\mathrm{NO}_{2}$ ) | $<1.5 \mathrm{mg} / \mathrm{L}$ | $<1.0 \mathrm{mg} / \mathrm{L}$ | <0.1 mg/L |  | $<1.0 \mathrm{mg} / \mathrm{L}$ | $<1.0 \mathrm{mg} / \mathrm{L}$ |
| Salinity (extended periods) | 0-35 ppt |  | <5 ppt | <5 ppt |  | <4 ppt |
| Salinity bath | 0-35 ppt |  | 5-10 ppt for 1 hour |  | max. 20 ppt for one hour |  |
| Hardness ( $\mathrm{CaCO}_{3}$ ) |  |  | >50 mg/L | >50 mg/L | >40 mg/L | >40 mg/L |
| Alkalinity | >20 mg/L |  | 100-400 ppm | 100-400 ppm | $>40 \mathrm{mg} / \mathrm{L}$ | >40 mg/L |
| Chlorine | $<0.04 \mathrm{mg} / \mathrm{L}$ |  |  |  | $<0.04 \mathrm{mg} / \mathrm{L}$ |  |
| Hydrogen sulphide | $0-0.3 \mathrm{mg} / \mathrm{L}$ |  |  |  | $0-0.3 \mathrm{mg} / \mathrm{L}$ |  |
| Iron | $<0.1 \mathrm{mg} / \mathrm{L}$ |  | $<0.5 \mathrm{mg} / \mathrm{L}$ | $<0.5 \mathrm{mg} / \mathrm{L}$ | $<0.1 \mathrm{mg} / \mathrm{L}$ | $<0.1 \mathrm{mg} / \mathrm{L}$ |
| Spawning temperature ${ }^{\circ} \mathrm{C}$ | Marine |  | 23-28 | 23-28 | >24 for more than three days |  |

Source: Department of Primary Industries and Fisheries: Water Quality in Aquaculture—DPI Notes April 2004.

Table 3.5 Aquaculture EV - Water quality objectives for optimal growth of particular marine species

| Water parameter | Barramundi |  | Tiger prawn |  | Kuruma prawn |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Hatchery | Grow out | Hatchery | Grow out | Grow out |
| Dissolved oxygen | Saturation | >4 mg/L | >4 mg/L | >3.5 mg/L | >4 mg/L |
| Temperature ${ }^{\circ} \mathrm{C}$ | 28-30 optimum 25-31 range | 28-30 optimum |  | 26-32 | 24 |
| pH | $\sim 8$ | $\sim 8$ | $\sim 8$ | 7.5-8.5 | 7.5-8.5 |
| Ammonia (TAN, total ammonia-nitrogen) |  | $0.1-0.5 \mathrm{mg} / \mathrm{L}$ |  |  |  |
| Ammonia ( $\mathrm{NH}_{3}$, unionised form) | $<0.1 \mathrm{mg} / \mathrm{L}$ |
| Nitrate ( $\mathrm{NO}_{3}$ ) | $<1.0 \mathrm{mg} / \mathrm{L}$ |
| Nitrite ( $\mathrm{NO}_{2}$ ) | $<0.2 \mathrm{mg} / \mathrm{L}$ | $<1.0 \mathrm{mg} / \mathrm{L}$ | $<0.2 \mathrm{mg} / \mathrm{L}$ | <0.2 mg/L | <0.2 mg/L |
| Salinity | 28-31 ppt | 0-35 ppt |  | 10-25 ppt optimum | 30-35 ppt optimum |
| Alkalinity |  | $\begin{aligned} & 105-125 \mathrm{mg} / \mathrm{L} \\ & \mathrm{CaCO}_{3} \end{aligned}$ |  |  |  |
| Clarity |  |  |  | $\begin{aligned} & 30-40 \mathrm{~cm} \\ & \text { Secchi disk } \end{aligned}$ | 30-40 cm Secchi disk |
| Hydrogen sulphide |  | $<0.3 \mathrm{mg} / \mathrm{L}$ |  |  |  |
| Iron |  | <0.02 mg/L |  | $<1.0 \mathrm{mg} / \mathrm{L}$ |  |
| Spawning temperature ${ }^{\circ} \mathrm{C}$ |  | 28-32 |  | 27-32 |  |

Source: Department of Primary Industries and Fisheries—Water Quality in Aquaculture—DPI Notes April 2004 (as amended).

Table 3.6 Irrigation EV - Water quality objectives for thermotolerant (faecal) coliforms in irrigation water used for food and non-food crops ${ }^{1}$

| Intended use | Median values of thermotolerant coliforms <br> (colony forming units-cfu) $^{2}$ |
| :--- | :--- |
| Raw human food crops in direct contact with irrigation water (e.g. via <br> sprays, irrigation of salad vegetables) | $<10$ cfu/100 mL |
| Raw human food crops not in direct contact with irrigation water (edible <br> product separated from contact with water, e.g. by peel, use of trickle <br> irrigation); or crops sold to consumers cooked or processed | $<1000$ cfu/100 mL |
| Pasture and fodder for dairy animals (without withholding period) | $<100$ cfu/100 mL |
| Pasture and fodder for dairy animals (with withholding period of five <br> days) | $<1000 \mathrm{cfu} / 100 \mathrm{~mL}$ |
| Pasture and fodder (for grazing animals except pigs and dairy animals, <br> i.e. cattle, sheep and goats) | $<1000 \mathrm{cfu} / 100 \mathrm{~mL}$ |
| Silviculture, turf, cotton, etc. (restricted public access) | $<10000 \mathrm{cfu} / 100 \mathrm{~mL}$ |

## Notes:

1. Adapted from ARMCANZ, ANZECC and NHMRC (1999).
2. Refer to Australian Drinking Water Guidelines 2000 (AWQG), Volume 1, Section 4.2.3.3 for advice on testing protocols.

Source: AWQG, Volume 1, Section 4.2.3.3, table 4.2.2.

Table 3.7 Irrigation EV - Water quality objectives for heavy metals and metalloids in agricultural irrigation water ${ }^{1}$ - long term trigger value (LTV), short-term trigger value (STV) and soil cumulative contamination loading limit (CCL)

| Element | Soil cumulative contaminant <br> loading limit (CCL) (kg/ha) |  |  |
| :--- | :--- | :--- | :--- |
| Aluminium | ND | Long-term trigger value (LTV) in <br> irrigation water (up to 100 years) <br> $(\mathbf{m g} / \mathrm{L})$ | Short-term trigger value <br> (STV) in irrigation water <br> (up to 20 years) (mg/L) |
| Arsenic | 20 | 5 | 20 |
| Beryllium | ND | 0.1 | 2.0 |
| Boron | ND | 0.1 | 0.5 |
| Cadmium | 2 | 0.5 | Refer to AWQG, <br> Vol 3, table 9.2.18 |
| Chromium | ND | 0.01 | 0.05 |
| Cobalt | ND | 0.1 | 1 |
| Copper | 140 | 0.05 | 0.1 |
| Fluoride | ND | 0.2 | 5 |
| Iron | ND | 1 | 2 |
| Lead | 260 | 0.2 | 10 |
| Lithium | ND | 2.5 | 5 |
| Manganese | ND | $(0.075$ for citrus crops) | 2.5 |
| Mercury | 2 | 0.2 | $(0.075$ for citrus crops) |

## Notes:

1. Concentrations in irrigation water should be less than the trigger values. Trigger values should only be used in conjunction with information on each individual element and the potential for off-site transport of contaminants.
2. $N D=$ Not determined; insufficient background data to calculate CCL.

Source: AWQG, Volume 1, Section 4.2.6, table 4.2.10.

Table 3.8 Stock watering EV - Water quality objectives for tolerances of livestock to total dissolved solids (salinity) in drinking water ${ }^{1}$

| Livestock | Total dissolved solids (TDS) (mg/L) |  |  |
| :--- | :--- | :--- | :--- |
|  | No adverse effects <br> on animals expected. | Animals may have initial reluctance to drink or <br> there may be some scouring, but stock should <br> adapt without loss of production | Loss of production and decline <br> in animal condition and health <br> would be expected. Stock may <br> tolerate these levels for short <br> periods if introduced gradually |
| Beef cattle | $0-4000$ | $4000-5000$ | $5000-10000$ |
| Dairy cattle | $0-2500$ | $2500-4000$ | $4000-7000$ |
| Sheep | $0-5000$ | $5000-10000$ | $10000-13000^{2}$ |
| Horses | $0-4000$ | $4000-6000$ | $6000-7000$ |
| Pigs | $0-4000$ | $4000-6000$ | $6000-8000$ |
| Poultry | $0-2000$ | $2000-3000$ | $3000-4000$ |

## Notes:

1. From ANZECC (1992), adapted to incorporate more recent information.
2. Sheep on lush green feed may tolerate up to $13000 \mathrm{mg} / \mathrm{L}$ TDS without loss of condition or production.

Source: AWQG, Volume 1, Section 4.3.3.5, table 4.3.1.

Table 3.9 Stock watering EV - Water quality objectives (low risk trigger values) for heavy metals and metalloids in livestock drinking water

| Metal or metalloid | Trigger value (low risk) ${ }^{1,2}(\mathrm{mg} / \mathrm{L})$ |
| :--- | :--- |
| Aluminium | 5 |
| Arsenic | 0.5 (up to $5^{3}$ ) |
| Beryllium | ND |
| Boron | 5 |
| Cadmium | 0.01 |
| Chromium | 1 |
| Cobalt | 1 |
| Copper | 0.4 (sheep), 1 (cattle), 5 (pigs), 5 (poultry) |
| Fluoride | 2 |
| Iron | not sufficiently toxic |
| Lead | 0.1 |
| Manganese | not sufficiently toxic |
| Mercury | 0.002 |
| Molybdenum | 0.15 |
| Nickel | 1 |
| Selenium | 0.02 |
| Uranium | 0.2 |
| Vanadium | ND |
| Zinc | 20 |

## Notes:

1. Higher concentrations may be tolerated in some situations (further details provided in AWQG, Volume 3, Section 9.3.5).
2. $\mathrm{ND}=$ not determined, insufficient background data to calculate.
3. May be tolerated if not provided as a food additive and natural level in the diet are low.

Source: AWQG, Volume 1, Section 4.3.4, table 4.3.2.

## Table 3.10 Recreational waters - Alert levels and corresponding actions for management of cyanobacteria

The water quality objectives for water used for recreational purposes are that the values for cyanobacteria cell counts or biovolume meet the guideline values set out in Chapter 6 of the Guidelines for Managing Risks in Recreational Water.
When cyanobacteria are present in large numbers they can present a significant hazard, particularly to primary contact users of waters. Monitoring/action requirements relative to cyanobacteria 'alert' levels are summarised below the table, and are explained more fully in the Guidelines for Managing Risks in Recreational Water (NHMRC, 2008).
Further details on the process to determine suitability of waters for recreation, relative to historical cyanobacterial levels and susceptibility to cyanobacterial contamination, are contained in sections 6 and 7 of the NHMRC guidelines.

| Green level surveillance mode ${ }^{1}$ | Amber level alert mode ${ }^{1}$ | Red level action mode ${ }^{1}$ |
| :---: | :---: | :---: |
| Fresh waters |  |  |
| $\geq 500$ to $<5000$ cells $/ \mathrm{mL}$ M. aeruginosa or biovolume equivalent of $>0.04$ to $<0.4 \mathrm{~mm}^{3} / \mathrm{L}$ for the combined total of all cyanobacteria. | $\geq 5000$ to $<50000$ cells $/ \mathrm{mL}$ M. aeruginosa or biovolume equivalent of $\geq 0.4$ to $<4 \mathrm{~mm}^{3} / \mathrm{L}$ for the combined total of all cyanobacteria where a known toxin producer is dominant in the total biovolume ${ }^{2}$. or ${ }^{3}$ <br> $\geq 0.4$ to $<10 \mathrm{~mm}^{3} / \mathrm{L}$ for the combined total of all cyanobacteria where known toxin producers are not present. | Level 1 guideline ${ }^{4}$ : <br> $\geq 10 \mu \mathrm{~g} / \mathrm{L}$ total microcystins <br> or <br> $\geq 50000$ cells $/ \mathrm{mL}$ toxic $M$. aeruginosa or biovolume equivalent of $\geq 4 \mathrm{~mm}^{3} / \mathrm{L}$ for the combined total of all cyanobacteria where a known toxin producer is dominant in the total biovolume. $o r^{3}$ <br> Level 2 guideline ${ }^{4}$ : <br> $\geq 10 \mathrm{~mm}^{3} / \mathrm{L}$ for total biovolume of all cyanobacterial material where known toxins are not present. <br> or <br> cyanobacterial scums are consistently present ${ }^{5}$. |
| Coastal and estuarine waters |  |  |
| Karenia brevis |  |  |
| $\leq 1 \mathrm{cell} / \mathrm{mL}$ | >1- <10 cells/mL | $\geq 10$ cells $/ \mathrm{mL}$ |
| Lyngbya majuscula, Pfiesteria spp. |  |  |
| History but no current presence of organism | Present in low numbers | Present in high numbers. (For Lyngbya majuscula this involves the relatively widespread visible presence of dislodged algal filaments in the water and washed up onto the beach) |
| Nodularia spumigena: See NHMRC, Chapter 6 (Cyanobacteria and algae in fresh water) for details. |  |  |

## Notes:

1. Recommended actions at different alert levels are outlined below (based on NHMRC, 2008, table 6.6—fresh waters. Similar actions are outlined for coastal/estuarine waters in NHMRC table 7.6):

Green: Regular monitoring. Weekly sampling and cell counts at representative locations in the water body where known toxigenic species are present (i.e. Microcystis aeruginosa, Anabaena circinalis, Cylindrospermopsis raciborskii, Aphanizomenon ovalisporum, Nodularia spumigena); or fortnightly for other types including regular visual inspection of water surface for scums.

Amber: Notify agencies as appropriate. Increase sampling frequency to twice weekly at representative locations in the water body where toxigenic species (above) are dominant within the alert level definition (i.e. total biovolume) to establish population growth and spatial variability in the water body. Monitor weekly or fortnightly where other types are dominant. Make regular visual inspections of water surface for scums. Decide on requirement for toxicity assessment or toxin monitoring.
Red: Continue monitoring as for (amber) alert mode. Immediately notify health authorities for advice on health risk. ('In action mode the local authority and health authorities warn the public of the existence of potential health risks; for example, through the media and the erection of signs by the local authority.' NHMRC, 2008; 114). Make toxicity assessment or toxin measurement of water if this has not already been done. Health authorities warn of risk to public health (i.e. the authorities make a health risk assessment considering toxin monitoring data, sample type and variability).
2. The definition of 'dominant' is where the known toxin producer comprises 75 per cent or more of the total biovolume of cyanobacteria in a representative sample.
3. This applies where high cell densities or scums of 'non toxic' cyanobacteria are present i.e. where the cyanobacterial population has been tested and shown not to contain known toxins (mycrocystins, nodularian, cylindrospermopsin or saxitoxin).
4. Health risks and levels: Level 1 is developed to protect against short-term health effects of exposure to cyanobacterial toxins ingested during recreational activity, whereas the Level 2 applies to the circumstance where there is a probability of increased likelihood of non-specific adverse health outcomes, principally respiratory, irritation and allergy symptoms, from exposure to very high cell densities of cyanobacterial material irrespective of the presence of toxicity or known toxins (NHMRC, 2008;114).
5. This refers to the situation where scums occur at the recreation site each day when conditions are calm, particularly in the morning. Note that it is not likely that scums are always present and visible when there is a high population as the cells may mix down with wind and turbulence and then reform later when conditions become stable.
Source: Based on NHMRC (2008) Guideline for Managing Risks in Recreational Water (tables 6.2, 6.6, 7.3).

# Water quality objectives to protect groundwater environmental values 

### 3.4 Water quality objectives to protect groundwater environmental values

This section lists WQOs for the various groundwater types to protect the aquatic ecosystems environmental values stated for the groundwaters of the Barron River basin at Section 2.
WQOs are provided according to their chemistry zone and depth category in tables 4.1 to 4.9.
Where groundwaters interact with surface waters, groundwater quality should not compromise identified EVs and WQOs for those waters.
The AWQG recommends that the highest level of protection should be provided to underground aquatic ecosystems, given their high conservation value.
Where groundwaters are in good condition the intent is to maintain existing water quality (20th, 50 th and 80th percentiles).

### 3.4.1 Wet Tropics groundwater chemistry groups

The groundwater chemistry zones in the Barron River basin are shown in Plan WQ1083. This plan shows the EVs of groundwater chosen for protection. Groundwater chemistry zones on the plan are labelled with the relevant identification number outlined in the list below.
The major groups include:
Wet tropical alluvial:

- ID No. 17 - East Mareeba Dimbula Irrigation area (Table 4.1)
- ID No. 18 - Barron Mulgrave Johnstone metamorphics (Table 4.2)
- ID No. 19 - Daintree Nth Barron uplands and slopes (Table 4.3)
- ID No. 23 - Basalt uplands and slopes (Table 4.4).

Sodic:

- ID No. 10 - Granitic uplands and slopes (Table 4.5).

Coastal and floodplain:

- ID No. 9 - Low salinity coastal floodplains (Table 4.6).

High salinity alluvial deposits:

- ID No. 3 - Ellie (Table 4.7)
- ID No. 7 - Clohesy (Table 4.8).

High sulphate:

- ID No. 26 - NE Caravonica (Table 4.9).

Table 4.1 Water quality objectives to protect aquatic ecosystem EVs for Groundwater Chemistry Group (refer Plan WQ1083) - Wet Tropical Alluvial - 17 East Mareeba Dimbula Irrigation area

| Depth | Percentile |  | \% |  |  |  | g |  | \% |  | \% |  | \% |  | \% | $\begin{aligned} & \mathrm{EC} \\ & \dot{0} \dot{\mathrm{O}} \mathrm{E} \end{aligned}$ |  | 든 |  |  | $\begin{aligned} & \text { 广 } \\ & \text { © } \\ & \text { 튼 } \end{aligned}$ | $\begin{aligned} & \overline{\mathrm{I}} \\ & \text { 关 } \\ & \stackrel{0}{\circ} \end{aligned}$ | $\begin{aligned} & \overline{\mathrm{J}} \\ & \text { 흘 } \\ & \text { 들 } \end{aligned}$ |  | $\begin{aligned} & \overline{\mathrm{I}} \\ & \dot{\text { E}} \\ & \overline{\mathrm{E}} \end{aligned}$ | $\underset{\text { ๙x }}{\text { ® }}$ |  | $\underset{\text { S }}{\substack{\text { S }}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| shallow | 20th | 27 | 52 | 5 | 2 | 4 | 5 | 141 | 38 | 24 | 19 | - | - | - | - | 262 | 28 | 6.8 | 71 | 38.4 | 0.404 | 0.000 | 0.010 | 0.000 | 0.00 | 1.70 | 0.89 |  |
|  | 50th | 150 | 75 | 8 | 9 | 13 | 15 | 283 | 67 | 34 | 37 | - | - | 0 | 0 | 816 | 65 | 7.6 | 228 | 70.0 | 0.580 | 0.075 | 0.080 | 0.000 | 0.00 | 5.35 | 3.49 |  |
|  | 80th | 788 | 91 | 23 | 15 | 47 | 30 | 853 | 82 | 844 | 67 | 1 | 2 | 1 | 0 | 3,776 | 245 | 8.2 | 683 | 95.3 | 1.523 | 0.643 | 2.427 | 0.000 | 0.00 | 22.66 | 7.55 | - |
| moderate | 20th | 44 | 30 | 11 | 17 | 15 | 14 | 160 | 41 | 38 | 17 | - | - | - | - | 370 | 89 | 7.2 | 132 | 45.6 | 0.183 | 0.000 | 0.000 | 0.000 | 0.00 | 1.48 | 0.69 | - |
|  | 50th | 87 | 56 | 34 | 22 | 22 | 22 | 365 | 69 | 65 | 27 | 2 | 1 | 0 | 0 | 710 | 191 | 8.0 | 313 | 65.0 | 0.200 | 0.005 | 0.000 | 0.000 | 0.00 | 3.50 | 0.98 |  |
|  | 80th | 171 | 69 | 44 | 24 | 50 | 46 | 459 | 83 | 177 | 57 | 9 | 2 | 3 | 1 | 1,199 | 296 | 8.2 | 382 | 69.7 | 0.370 | 0.020 | 0.550 | 0.000 | 0.00 | 4.70 | 3.35 | - |
| deep | 20th | 38 | 36 | 25 | 26 | 14 | 26 | 183 | 56 | 30 | 21 | 0 | 0 | - | - | 397 | 121 | 7.2 | 151 | 43.1 | 0.310 | 0.000 | 0.003 | 0.000 | 0.00 | 1.47 | 0.58 |  |
|  | 50th | 41 | 41 | 27 | 30 | 15 | 28 | 196 | 75 | 36 | 24 | 2 | 0 |  |  | 422 | 129 | 7.6 | 161 | 64.0 | 0.460 | 0.000 | 0.060 | 0.010 | 0.00 | 1.60 | 0.78 |  |
|  | 80th | 105 | 48 | 62 | 32 | 45 | 34 | 377 | 78 | 133 | 40 | 4 | 1 | 8 | 2 | 990 | 342 | 8.2 | 318 | 67.3 | 0.530 | 0.030 | 0.087 | 0.020 | 0.00 | 2.56 | 2.59 | - |

Table 4.2 Water quality objectives to protect aquatic ecosystem EVs for Groundwater Chemistry Group (refer Plan WQ1083) - Wet Tropical Alluvial - 18 Barron Mulgrave Johnstone metamorphics

| Depth | Percentile |  | \% |  |  | $\begin{gathered} \hline \mathbf{M g} \\ \dot{\mathrm{J}} \\ \dot{\mathrm{I}} \\ \hline \end{gathered}$ |  | $\begin{aligned} & \mathrm{HCO}_{3} \\ & \begin{array}{c\|c} \dot{\beth} & \\ \dot{E} & \% \end{array} \end{aligned}$ |  | $$ |  | $\begin{array}{l\|l\|} \hline \mathrm{SO}_{4} \\ \dot{\beth} & \\ \dot{\mathrm{I}} & \% \end{array}$ |  |  |  | $\begin{gathered} \hline \text { EC } \\ \dot{E} \\ \dot{0} \\ \dot{\Xi} \end{gathered}$ |  | 동 |  | $\begin{aligned} & \bar{\beth} \\ & \text { ס } \\ & \text { EN } \\ & \underset{N}{N} \end{aligned}$ |  |  |  | $\begin{aligned} & \overline{\mathrm{I}} \\ & \dot{\text { O}} \\ & \text { E } \\ & \underset{N}{n} \end{aligned}$ |  | 氐 |  | $\underset{\text { E }}{\underset{\text { I }}{\text { I }}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| shallow | 20th | 8 | 45 | 2 | 12 | 1 | 11 | 23 | 41 | 5 | 19 | - | - | - | - | 66 | 8 | 6.4 | 19 | 12.0 | 0.003 | 0.000 | 0.000 | 0.000 | 0.00 | 0.80 | 0.10 | - |
|  | 50th | 10 | 59 | 4 | 24 | 2 | 13 | 32 | 68 | 7 | 25 | - | - | 2 | 2 | 105 | 18 | 6.7 | 26 | 18.0 | 0.100 | 0.010 | 0.020 | 0.015 | 0.01 | 0.90 | 0.22 | - |
|  | 80th | 13 | 75 | 9 | 35 | 3 | 21 | 55 | 75 | 19 | 44 | 2 | 3 | 7 | 13 | 144 | 34 | 7.1 | 45 | 36.0 | 0.119 | 1.026 | 0.401 | 0.030 | 0.01 | 1.59 | 0.32 | - |
| moderate | 20th | 8 | 40 | 3 | 12 | 1 | 9 | 18 | 34 | 6 | 13 | - | - | - | - | 90 | 12 | 6.5 | 16 | 14.9 | 0.043 | 0.000 | 0.000 | 0.000 | 0.00 | 0.80 | 0.00 | - |
|  | 50th | 13 | 56 | 6 | 19 | 3 | 21 | 52 | 62 | 9 | 25 | 2 | 2 | 2 | 2 | 143 | 28 | 7.3 | 47 | 24.0 | 0.200 | 0.000 | 0.000 | 0.000 | 0.00 | 1.10 | 0.33 | - |
|  | 80th | 97 | 76 | 25 | 35 | 13 | 29 | 173 | 78 | 61 | 51 | 6 | 6 | 7 | 12 | 570 | 115 | 7.9 | 151 | 40.1 | 0.500 | 0.020 | 0.030 | 0.010 | 0.01 | 2.98 | 1.36 | - |
| deep | 20th | 8 | 47 | 1 | 8 | 1 | 11 | 16 | 38 | 5 | 12 | - | - | - | - | 71 | 6 | 6.5 | 13 | 17.0 | 0.010 | 0.000 | 0.000 | 0.000 | 0.00 | 0.81 | 0.12 | - |
|  | 50th | 13 | 57 | 3 | 16 | 3 | 26 | 42 | 66 | 7 | 26 | 1 | 1 | 1 | 0 | 110 | 20 | 7.0 | 35 | 23.0 | 0.110 | 0.000 | 0.000 | 0.008 | 0.00 | 1.35 | 0.30 | - |
|  | 80th | 38 | 82 | 8 | 24 | 8 | 31 | 106 | 85 | 25 | 45 | 3 | 3 | 4 | 9 | 305 | 51 | 7.7 | 88 | 33.9 | 0.362 | 0.049 | 0.181 | 0.024 | 0.02 | 2.39 | 0.70 | - |
| very deep | 20th | 15 | 77 | 2 | 8 | 1 | 9 | 22 | 38 | 11 | 25 | 0 | 0 | 0 | 0 | 98 | 9 | 6.4 | 18 | 22.0 | 0.524 | 0.000 | 0.000 | 0.000 | 0.00 | 2.20 | 0.10 | - |
|  | 50th | 17 | 80 | 2 | 10 | 1 | 10 | 35 | 57 | 12 | 32 | 1 | 4 | 5 | 4 | 119 | 10 | 7.2 | 29 | 22.5 | 0.620 | 0.015 | 0.000 | 0.000 | 0.00 | 2.25 | 0.33 | - |
|  | 80th | 20 | 84 | 8 | 12 | 4 | 11 | 50 | 63 | 17 | 34 | 4 | 9 | 15 | 22 | 166 | 37 | 7.8 | 41 | 24.8 | 0.695 | 0.700 | 0.063 | 0.000 | 0.00 | 2.40 | 0.40 | - |

Table 4．3 Water quality objectives to protect aquatic ecosystem EVs for Groundwater Chemistry Group（refer Plan WQ1083）－Wet Tropical Alluvial－ 19 Daintree－Nth Barron uplands and slopes

| Depth | Percentile | $\begin{aligned} & \mathrm{Na} \\ & \stackrel{\mathrm{~J}}{\mathrm{~J}} \\ & \dot{\mathrm{E}} \\ & \dot{E} \end{aligned}$ |  | $$ |  |  |  |  |  |  |  |  |  | $$ |  | $\begin{gathered} \text { EC } \\ \bar{E} \\ \dot{y} \\ \dot{\beth} \end{gathered}$ |  | 증 |  |  |  |  |  | $\begin{array}{r} \text { 亏ココ } \\ \text { Nَ } \end{array}$ | $\begin{array}{r} \overline{\mathrm{I}} \\ 0 \\ 0 \end{array}$ | $\underset{\text { ๙ }}{\text { ๙ }}$ |  | $\underset{\text { E }}{\text { S }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| shallow | 20th | 7 | 56 | 1 | 5 | 1 | 13 | 10 | 17 | 10 | 39 | － | － | － | － | 64 | 9 | 6.0 | 10 | 13.0 | 0.000 | 0.000 | 0.000 | 0.010 | 0.01 | 1.33 | 0.00 | － |
|  | 50th | 16 | 66 | 2 | 9 | 3 | 22 | 20 | 32 | 20 | 57 | － | 0 | 3 | 4 | 115 | 17 | 6.7 | 16 | 18.0 | 0.080 | 0.000 | 0.000 | 0.050 | 0.01 | 1.60 | 0.00 | － |
|  | 80th | 28 | 77 | 4 | 24 | 5 | 27 | 41 | 52 | 31 | 71 | 3 | 6 | 10 | 13 | 167 | 26 | 7.3 | 34 | 33.5 | 0.263 | 0.019 | 0.010 | 0.080 | 0.02 | 2.40 | 0.19 |  |
| moderate | 20th | 15 | 57 | 2 | 8 | 3 | 17 | 18 | 25 | 18 | 38 | － | － | － | － | 120 | 17 | 6.4 | 14 | 19.0 | 0.100 | 0.000 | 0.000 | 0.011 | 0.00 | 1.41 | 0.00 | － |
|  | 50th | 19 | 64 | 4 | 14 | 4 | 22 | 35 | 39 | 28 | 57 | 0 | 0 | 1 | 1 | 145 | 26 | 7.1 | 29 | 27.0 | 0.195 | 0.000 | 0.000 | 0.030 | 0.00 | 1.80 | 0.05 |  |
|  | 80th | 25 | 69 | 6 | 24 | 5 | 25 | 49 | 55 | 34 | 64 | 2 | 4 | 3 | 5 | 189 | 34 | 7.6 | 40 | 37.5 | 0.356 | 0.010 | 0.000 | 0.048 | 0.01 | 1.90 | 0.57 | － |
| deep | 20th | 8 | 41 | 4 | 27 | 3 | 14 | 31 | 52 | 13 | 16 | 2 | 2 | － | － | 95 | 23 | 6.9 | 25 | 14.4 | 0.130 | 0.000 | 0.000 | 0.030 | 0.00 | 0.73 | 0.08 | － |
|  | 50th | 29 | 46 | 7 | 32 | 4 | 17 | 53 | 61 | 15 | 30 | 4 | 4 | － | － | 225 | 31 | 7.4 | 43 | 46.0 | 0.200 | 0.000 | 0.000 | 0.030 | 0.01 | 1.10 | 0.29 | － |
|  | 80th | 33 | 51 | 36 | 44 | 8 | 24 | 178 | 79 | 37 | 38 | 5 | 7 | 1 | 1 | 341 | 120 | 7.6 | 147 | 51.6 | 0.990 | 0.015 | 0.075 | 0.030 | 0.02 | 1.57 | 0.85 | － |
| $v$ deep |  | － | － | － | － | － | － | － | － | － | － | － | － | － | － | － |  |  |  |  |  |  |  |  |  |  |  |  |
| artesian | 20th | 20 | 60 | 2 | 9 | 4 | 22 | 24 | 29 | 31 | 52 | － | － | － | － | 153 | 23 | 6.3 | 20 | 8.8 | 0.000 | － | － | 0.000 | 0.00 | 1.63 | － | － |
|  | 50th | 22 | 65 | 3 | 11 | 4 | 24 | 27 | 32 | 33 | 67 | － | － | － | － | 160 | 24 | 6.6 | 22 | 13.5 | 0.150 | － | － | 0.000 | 0.00 | 1.80 | － | － |
|  | 80th | 23 | 69 | 4 | 12 | 6 | 29 | 51 | 47 | 34 | 70 | － | － | － | － | 195 | 32 | 7.3 | 42 | 23.1 | 0.720 | － | － | 0.000 | 0.00 | 2.04 | － | － |

Table 4.4 Water quality objectives to protect aquatic ecosystem EVs for Groundwater Chemistry Group (refer Plan WQ1083) - Wet Tropical Alluvial - 19 Basalt uplands and slopes

| Depth | Percentile | Na |  | Ca |  | $\mathbf{M g}$ |  | $\mathrm{HCO}_{3}$ |  | Cl |  | $\mathrm{SO}_{4}$ |  | $\mathrm{NO}_{3}$ |  | EC |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \bar{\beth} \\ & \text { ס } \end{aligned}$ | \% | $\begin{aligned} & \bar{\square} \\ & \dot{\text { ㅌ }} \end{aligned}$ | \% | $\begin{aligned} & \bar{\square} \\ & \text { ס̄ } \end{aligned}$ | \% | 匚. 들 | \% | $\begin{aligned} & \bar{\square} \\ & \text { ס̄ } \end{aligned}$ | \% | $\begin{aligned} & \bar{\square} \\ & \text { ס̄ } \end{aligned}$ | \% | $\begin{aligned} & \bar{\square} \\ & \text { ס } \end{aligned}$ | \% | $\begin{aligned} & \bar{E} \\ & \dot{0} \\ & \dot{\beth} \end{aligned}$ |  | 증 |  | $\begin{aligned} & \bar{\Xi} \\ & \text { © } \\ & \text { E } \\ & \underset{N}{N} \end{aligned}$ |  | $\begin{aligned} & \bar{\Xi} \\ & \dot{0} \\ & \text { E } \\ & \dot{\sim} \end{aligned}$ |  |  |  | ¢ |  | S |
| shallow | 20th | 4 | 32 | 1 | 10 | 2 | 22 | 11 | 39 | 6 | 20 | - | - | 1 | 1 | 58 | 9 | 5.9 | 10 | 10.0 | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 | 0.50 | 0.00 | 466.3 |
|  | 50th | 9 | 43 | 3 | 23 | 3 | 30 | 29 | 55 | 11 | 32 | 1 | 1 | 5 | 8 | 75 | 18 | 6.6 | 28 | 32.0 | 0.020 | 0.005 | 0.000 | 0.010 | 0.01 | 0.85 | 0.11 | 566.5 |
|  | 80th | 16 | 64 | 11 | 29 | 9 | 40 | 89 | 76 | 17 | 47 | 2 | 3 | 9 | 18 | 202 | 61 | 7.5 | 74 | 54.5 | 0.256 | 0.030 | 0.019 | 0.021 | 0.02 | 1.60 | 0.84 | 575.7 |
| moderate | 20th | 6 | 26 | 3 | 17 | 3 | 29 | 16 | 49 | 7 | 15 | - | - | - | 0 | 79 | 18 | 6.2 | 15 | 16.0 | 0.000 | 0.000 | 0.000 | 0.010 | 0.00 | 0.50 | 0.00 | 425.5 |
|  | 50th | 9 | 36 | 7 | 26 | 5 | 37 | 54 | 74 | 10 | 22 | - | - | 2 | 2 | 128 | 38 | 6.8 | 50 | 37.5 | 0.000 | 0.000 | 0.000 | 0.020 | 0.01 | 0.60 | 0.12 | 526 |
|  | 80th | 14 | 50 | 13 | 32 | 10 | 43 | 100 | 81 | 14 | 39 | 2 | 3 | 5 | 10 | 200 | 73 | 7.5 | 85 | 51.1 | 0.100 | 0.010 | 0.010 | 0.060 | 0.02 | 0.80 | 0.33 | 564.3 |
| deep | 20th | 7 | 25 | 3 | 18 | 3 | 26 | 30 | 62 | 7 | 11 | - | - | 0 | 0 | 97 | 20 | 6.4 | 26 | 22.3 | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 | 0.50 | 0.00 | 397.8 |
|  | 50th | 9 | 31 | 8 | 28 | 7 | 39 | 69 | 76 | 10 | 20 | - | - | 2 | 2 | 159 | 48 | 7.0 | 59 | 41.5 | 0.010 | 0.000 | 0.000 | 0.010 | 0.01 | 0.60 | 0.08 | 519.5 |
|  | 80th | 16 | 53 | 17 | 32 | 11 | 45 | 137 | 86 | 14 | 30 | 2 | 3 | 5 | 6 | 257 | 89 | 7.6 | 114 | 53.0 | 0.100 | 0.010 | 0.010 | 0.050 | 0.01 | 0.90 | 0.38 | 549 |
| very deep | 20th | 10 | 24 | 6 | 23 | 4 | 29 | 56 | 70 | 8 | 12 | - | - | - | - | 136 | 35 | 6.7 | 47 | 30.5 | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 | 0.50 | 0.07 | 332.3 |
|  | 50th | 11 | 30 | 12 | 30 | 9 | 40 | 91 | 80 | 11 | 16 | - | - | 3 | 2 | 196 | 69 | 7.3 | 79 | 46.0 | 0.000 | 0.000 | 0.000 | 0.020 | 0.01 | 0.60 | 0.16 | 449 |
|  | 80th | 17 | 45 | 16 | 33 | 11 | 44 | 123 | 85 | 14 | 23 | 4 | 4 | 6 | 5 | 257 | 80 | 8.0 | 107 | 52.0 | 0.070 | 0.021 | 0.000 | 0.050 | 0.02 | 1.00 | 0.44 | 532.1 |

Table 4.5 Water quality objectives to protect aquatic ecosystem EVs for Groundwater Chemistry Group (refer Plan WQ1083) - Sodic - 10 Granitic uplands and slopes

| Depth | Percentile | $\begin{gathered} \mathrm{Na} \\ \overline{-} \\ \text { 듵 } \end{gathered}$ | \% | $\begin{gathered} \mathbf{C a} \\ \stackrel{-}{\lrcorner} \\ \dot{\bar{E}} \mid \end{gathered}$ |  | $\begin{aligned} & \mathbf{M g} \\ & \begin{array}{c\|c} \dot{\beth} & \\ \text { 흩 } & \% \end{array} \end{aligned}$ |  |  |  | $\begin{aligned} & \bar{\beth} \\ & \text { ס̄ } \end{aligned}$ | \% | $\begin{aligned} & \text { S } \\ & \bar{\beth} \\ & \text { 읕 } \end{aligned}$ | \% |  | \% |  |  | 진 |  |  |  |  |  | $\begin{aligned} & \overline{\mathrm{I}} \\ & \dot{\text { O }} \\ & \stackrel{5}{\mathrm{E}} \end{aligned}$ |  | $\stackrel{\text { ๙ }}{\mathbf{K}}$ |  | $\underset{\text { E }}{\substack{\text { E }}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| shallow | 20th | 16 | 46 | 10 | 9 | 3 | 8 | 68 | 33 | 13 | 26 | 1 | 1 | 0 | 0 | 158 | 38 | 6.9 | 56 | 30.6 | 0.100 | 0.000 | 0.000 | 0.010 | 0.00 | 1.10 | 0.13 | - |
|  | 50th | 109 | 55 | 16 | 21 | 7 | 15 | 194 | 45 | 125 | 52 | 5 | 2 | 2 | 0 | 800 | 72 | 7.6 | 161 | 70.0 | 0.200 | 0.020 | 0.010 | 0.030 | 0.02 | 3.15 | 1.07 | - |
|  | 80th | 168 | 84 | 45 | 33 | 21 | 24 | 254 | 66 | 175 | 59 | 12 | 8 | 7 | 7 | 997 | 195 | 7.9 | 208 | 101.1 | 0.550 | 0.422 | 0.037 | 0.054 | 0.02 | 8.47 | 2.04 | - |
| moderate | 20th | 64 | 46 | 9 | 8 | 5 | 7 | 135 | 33 | 47 | 27 | 2 | 1 | 0 | 0 | 440 | 46 | 7.3 | 113 | 82.0 | 0.270 | 0.000 | 0.000 | 0.005 | 0.01 | 2.00 | 0.30 | - |
|  | 50th | 102 | 63 | 21 | 20 | 10 | 17 | 200 | 50 | 103 | 41 | 4 | 1 | 1 | 0 | 772 | 95 | 7.7 | 165 | 96.0 | 0.375 | 0.010 | 0.010 | 0.020 | 0.05 | 4.25 | 1.67 | - |
|  | 80th | 160 | 85 | 46 | 30 | 24 | 23 | 280 | 67 | 210 | 62 | 12 | 3 | 3 | 1 | 1,003 | 210 | 8.2 | 230 | 110.0 | 0.500 | 0.020 | 0.020 | 0.023 | 0.05 | 8.40 | 2.70 | - |
| deep | 20th | 27 | 41 | 12 | 16 | 5 | 13 | 118 | 66 | 20 | 20 | 1 | 1 | - | 0 | 257 | 53 | 6.7 | 97 | 79.0 | 0.280 | 0.003 | 0.004 | 0.007 | 0.01 | 1.30 | 0.43 | - |
|  | 50th | 32 | 49 | 18 | 31 | 7 | 20 | 147 | 74 | 26 | 23 | 2 | 1 | 0 | 0 | 300 | 76 | 7.0 | 120 | 93.0 | 0.360 | 0.020 | 0.010 | 0.020 | 0.05 | 1.60 | 0.72 | - |
|  | 80th | 113 | 72 | 24 | 35 | 10 | 24 | 219 | 79 | 54 | 31 | 16 | 5 | 1 | 0 | 572 | 99 | 7.8 | 182 | 107.0 | 0.600 | 0.100 | 0.050 | 0.050 | 0.05 | 5.81 | 2.16 | - |

Table 4．6 Water quality objectives to protect aquatic ecosystem EVs for Groundwater Chemistry Group（refer Plan WQ1083）－Coastal and Floodplain－9 Low salinity coastal floodplains

| Depth | Percentile |  |  | $\begin{gathered} C \\ \stackrel{C}{\square} \\ \dot{\Xi} \end{gathered}$ |  | $\begin{gathered} \text { M } \\ \dot{\square} \\ \text { ס̈ } \end{gathered}$ |  | $\begin{gathered} \text { HO } \\ \text { בَ } \\ \text { סे } \end{gathered}$ |  | $\begin{aligned} & \bar{ப} \\ & \text { ס̄ } \end{aligned}$ |  | $\begin{gathered} \text { SC } \\ \dot{\Xi} \\ \dot{\Xi} \end{gathered}$ |  | N <br> 匚 <br> 흩 |  | $\begin{gathered} \text { EC } \\ \bar{E} \\ \dot{E} \\ \dot{\Xi} \end{gathered}$ |  | 工 |  |  | $\begin{aligned} & \text { İ } \\ & \text { 흐́ } \\ & 4 \end{aligned}$ |  |  | $\begin{array}{r} \text { 亏. } \\ \text { 듣 } \end{array}$ |  | ¢ |  | $\underset{\text { S }}{\substack{\text { I }}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| shallow | 20th | 6 | 57 | 1 | 6 | 1 | 10 | 7 | 18 | 8 | 39 | － | － | － |  | 51 | 7 | 5.8 | 6 | 9.0 | 0.000 | 0.000 | 0.000 | 0.010 | 0.00 | 1.00 | 0.00 | － |
|  | 50th | 13 | 67 | 2 | 11 | 2 | 18 | 18 | 32 | 17 | 54 | 2 | 4 | 1 | 2 | 96 | 14 | 6.6 | 15 | 19.5 | 0.050 | 0.008 | 0.018 | 0.020 | 0.01 | 1.50 | 0.02 | － |
|  | 80th | 24 | 81 | 5 | 21 | 4 | 27 | 41 | 52 | 28 | 70 | 6 | 11 | 4 | 8 | 156 | 26 | 7.3 | 34 | 30.0 | 0.150 | 0.040 | 0.094 | 0.075 | 0.02 | 2.90 | 0.28 |  |
| moderate | 20th | 6 | 50 | 1 | 6 | 1 | 14 | 6 | 12 | 8 | 32 | － | － | 1 | 0 | 64 | 8 | 6.0 | 5 | 11.1 | 0.000 | 0.000 | 0.000 | 0.010 | 0.00 | 0.70 | 0.00 | － |
|  | 50th | 10 | 67 | 2 | 12 | 2 | 21 | 14 | 27 | 12 | 46 | 1 | 2 | 7 | 12 | 85 | 15 | 6.5 | 12 | 18.0 | 0.020 | 0.000 | 0.010 | 0.020 | 0.01 | 1.20 | 0.00 | － |
|  | 80th | 25 | 75 | 7 | 22 | 4 | 28 | 62 | 50 | 28 | 64 | 5 | 10 | 13 | 29 | 199 | 34 | 7.2 | 52 | 27.0 | 0.200 | 0.020 | 0.040 | 0.039 | 0.02 | 2.10 | 0.22 |  |
| deep | 20th | 6 | 53 | 1 | 8 | 1 | 12 | 6 | 19 | 8 | 22 | － | － | － | 0 | 59 | 6 | 5.5 | 5 | 11.0 | 0.000 | 0.000 | 0.000 | 0.005 | 0.00 | 0.90 | 0.00 | － |
|  | 50th | 9 | 65 | 2 | 14 | 2 | 18 | 16 | 35 | 10 | 43 | 1 | 2 | 3 | 5 | 82 | 12 | 6.5 | 14 | 17.0 | 0.050 | 0.002 | 0.010 | 0.010 | 0.01 | 1.30 | 0.10 | － |
|  | 80th | 18 | 76 | 6 | 25 | 3 | 24 | 64 | 68 | 15 | 65 | 4 | 5 | 9 | 22 | 163 | 34 | 7.2 | 52 | 35.0 | 0.180 | 0.030 | 0.060 | 0.030 | 0.02 | 1.65 | 0.49 | － |
| very deep | 20th | 7 | 54 | 1 | 10 | 1 | 10 | 13 | 21 | 7 | 20 | 1 | 2 | 1 | 0 | 64 | 9 | 6.1 | 11 | 16.0 | 0.010 | 0.000 | 0.000 | 0.000 | 0.00 | 0.70 | 0.00 | － |
|  | 50th | 9 | 59 | 3 | 15 | 3 | 16 | 29 | 46 | 9 | 39 | 1 | 4 | 4 | 9 | 95 | 19 | 6.9 | 24 | 23.0 | 0.100 | 0.005 | 0.005 | 0.010 | 0.02 | 1.30 | 0.13 | － |
|  | 80th | 78 | 74 | 18 | 26 | 8 | 25 | 103 | 65 | 65 | 60 | 16 | 8 | 8 | 16 | 511 | 67 | 7.5 | 85 | 43.7 | 0.610 | 0.020 | 0.020 | 0.030 | 0.02 | 5.25 | 1.47 | － |

Table 4.7 Water quality objectives to protect aquatic ecosystem EVs for Groundwater Chemistry Group (refer Plan WQ1083) - High salinity alluvial deposits - 3 Ellie

| Depth | Percentile | $\begin{gathered} \mathrm{Na} \\ \overline{\mathrm{~J}} \\ \text { ס் } \end{gathered}$ | \% | $\begin{aligned} & \bar{\Xi} \\ & \text { ס்̄ } \end{aligned}$ | \% | $\begin{array}{c\|} \hline \mathbf{M g} \\ \hline \dot{\Xi} \\ \dot{\mathrm{I}} \\ \hline \end{array}$ | \% | $\begin{gathered} \mathrm{HC} \\ \text { בי } \\ \text { ס } \end{gathered}$ |  |  | \% |  | \% | $\begin{aligned} & \text { N( } \\ & \dot{\beth} \\ & \dot{\text { ®i }} \end{aligned}$ | \% | $\begin{gathered} \text { EC } \\ \bar{E} \\ \dot{E} \\ \dot{\underline{y}} \end{gathered}$ | 훝 g <br>  | 든 |  | $\begin{aligned} & \bar{\top} \\ & \text { © } \\ & \text { E } \\ & \text { O} \\ & \dot{N} \end{aligned}$ | $\begin{aligned} & \text { İت } \\ & \text { 奇 } \\ & 4 \end{aligned}$ |  | $\begin{aligned} & \bar{د} \\ & \text { 읕 } \\ & \dot{E} \\ & \dot{\Sigma} \end{aligned}$ | $\begin{aligned} & \overline{\mathrm{J}} \\ & \text { ס } \\ & \underset{\mathbf{E}}{\mathbf{N}} \end{aligned}$ |  | ¢ |  | $\underset{\substack{\text { I }}}{\substack{\text { E }}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| shallow | 20th | 7 | 49 | 4 | 5 | 2 | 14 | 37 | 2 | 3 | 9 | 1 | 1 | 1 | 0 | 83 | 20 | 7.0 | 30 | 16.9 | 0.037 | 0.003 | 0.000 | 0.000 | 0.00 | 0.70 | 0.00 |  |
|  | 50th | 23 | 56 | 11 | 29 | 4 | 18 | 50 | 45 | 21 | 30 | 9 | 11 | 2 | 1 | 238 | 39 | 7.3 | 41 | 20.5 | 0.200 | 0.070 | 0.030 | 0.020 | 0.11 | 1.50 | 0.13 |  |
|  | 80th | 4,635 | 76 | 286 | 37 | 583 | 20 | 256 | 73 | 8,115 | 87 | 1,498 | 16 | 9 | 16 | 22,450 | 3,113 | 7.6 | 211 | 27.0 | 0.557 | 0.728 | 1.007 | 0.040 | 0.22 | 36.06 | 0.28 |  |
| moderate | 20th | 132 | 72 | 19 | 5 | 12 | 12 | 28 | 1 | 201 | 81 | 19 | 4 | - | - | 357 | 103 | 6.6 | 23 | 24.0 | 0.155 | 0.000 | 0.105 | 0.019 | 0.01 | 6.35 | 0.00 |  |
|  | 50th | 703 | 77 | 80 | 8 | 103 | 16 | 113 | 4 | 1,632 | 90 | 234 | 8 | - | 0 | 3,680 | 830 | 7.2 | 93 | 28.0 | 0.270 | 0.010 | 0.590 | 0.080 | 0.02 | 14.30 | 0.00 |  |
|  | 80th | 6,326 | 79 | 431 | 14 | 921 | 18 | 259 | 15 | 12,142 | 90 | 1,569 | 11 | 4 | 0 | 28,585 | 5,281 | 7.5 | 214 | 49.0 | 0.405 | 0.100 | 2.260 | 0.243 | 0.07 | 40.10 | 0.00 |  |
| deep | 20th | 28 | 67 | 5 | 4 | 6 | 14 | 29 | 1 | 53 | 77 | 10 | 6 | - | - | 204 | 30 | 6.6 | 24 | 24.0 | 0.127 | 0.000 | 0.051 | 0.030 | 0.11 | 2.18 | 0.00 |  |
|  | 50th | 4,650 | 76 | 314 | 5 | 498 | 18 | 190 | 1 | 8,050 | 89 | 1,195 | 9 | 4 | 0 | 17,650 | 3,222 | 7.3 | 158 | 26.0 | 0.300 | 0.030 | 1.545 | 0.045 | 0.13 | 37.50 | 0.00 |  |
|  | 80th | 10,509 | 79 | 546 | 9 | 1,336 | 24 | 236 | 18 | 18,542 | 90 | 2,568 | 12 | 16 | 2 | 44,557 | 6,848 | 7.7 | 197 | 32.5 | 0.412 | 1.645 | 2.320 | 0.060 | 0.14 | 55.85 | 0.40 |  |
| very deep | 20th | 28 | 55 | 8 | 6 | 6 | 18 | 43 | 1 | 29 | 46 | 2 | 1 | - | - | 280 | 43 | 6.7 | 35 | 12.5 | 0.100 | 0.000 | 0.000 | 0.053 | 0.01 | 1.83 | 0.00 |  |
|  | 50th | 281 | 72 | 37 | 9 | 34 | 19 | 91 | 10 | 493 | 86 | 16 | 6 | 2 | 0 | 1,830 | 214 | 7.0 | 75 | 31.0 | 0.175 | 0.000 | 0.090 | 0.060 | 0.07 | 9.10 | 0.00 |  |
|  | 80th | 5,625 | 75 | 504 | 21 | 777 | 23 | 206 | 30 | 10,708 | 90 | 1,390 | 9 | 6 | 1 | 27,800 | 4,399 | 7.3 | 170 | 36.8 | 0.254 | 0.628 | 2.432 | 0.123 | 0.11 | 36.84 | 0.10 |  |
| artesian | 20th | 54 | 59 | 20 | 14 | 9 | 11 | 46 | 2 | 48 | 31 | 7 | 3 | - | - | 640 | 85 | 6.9 | 38 | 54.0 | 0.160 | 0.050 | 0.130 | 0.130 | 0.00 | 2.60 | 0.00 |  |
|  | 50th | 339 | 67 | 61 | 19 | 28 | 14 | 108 | 33 | 616 | 61 | 73 | 6 | - | - | 2,070 | 268 | 7.1 | 89 | 54.5 | 0.630 | 0.055 | 0.510 | 0.195 | 0.01 | 7.70 | 0.55 |  |
|  | 80th | 624 | 76 | 102 | 24 | 48 | 17 | 171 | 64 | 1,185 | 90 | 138 | 8 | - | - | 3,500 | 450 | 7.2 | 140 | 55.0 | 1.100 | 0.060 | 0.890 | 0.260 | 0.01 | 12.80 | 1.09 |  |

Table 4.8 Water quality objectives to protect aquatic ecosystem EVs for Groundwater Chemistry Group (refer Plan WQ1083) - High salinity alluvial deposits - 7 Clohesy

| Depth | Percentile |  | \% |  | \% |  | \% | $\begin{aligned} & H \\ & \text { H } \\ & \text { io } \end{aligned}$ |  |  | \% | $\begin{gathered} \text { S } \\ \text { - } \\ \text { © } \end{gathered}$ | \% | $\begin{aligned} & \text { N } \\ & \text { i- } \\ & \text { io } \end{aligned}$ | \% |  |  | 듬 |  |  | $\begin{aligned} & \bar{\Xi} \\ & \dot{\text { E }} \\ & \dot{4} \end{aligned}$ |  | $\begin{aligned} & \overline{\mathrm{J}} \\ & \text { 辰 } \\ & \stackrel{\Gamma}{\Sigma} \end{aligned}$ |  | $\begin{aligned} & \overline{3} \\ & \dot{\text { ® }} \\ & \text { E } \end{aligned}$ | 先 |  | $\underset{\text { S }}{\substack{\text { S } \\ \text { T }}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| moderate | 20th | 110 | 61 | 19 | 14 | 10 | 10 | 168 | 23 | 152 | 66 | 3 | 1 | - | - | 784 | 90 | 6.9 | 96 | 32.8 | 0.295 | 0.000 | 0.015 | 0.000 | 0.00 | 4.17 | 0.34 |  |
|  | 50th | 190 | 70 | 34 | 16 | 15 | 14 | 205 | 25 | 270 | 74 | 8 | 2 | - | - | 1,100 | 145 | 7.8 | 157 | 53.5 | 0.500 | 0.010 | 0.080 | 0.013 | 0.03 | 6.20 | 1.00 |  |
|  | 80th | 242 | 74 | 53 | 17 | 31 | 22 | 262 | 35 | 422 | 81 | 10 | 2 | 1 | 3 | 1,625 | 257 | 8.0 | 209 | 56.9 | 0.639 | 0.496 | 0.165 | 0.025 | 0.05 | 7.18 | 1.66 |  |
| deep |  | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |  |  |  |  |  |  |  |  |  |  |  |

Table 4.9 Water quality objectives to protect aquatic ecosystem EVs for Groundwater Chemistry Group (refer Plan WQ1083) - High sulphate - 26 NE Caravonica

| Depth | Percentile |  |  | $\begin{gathered} \quad \text { C } \\ \vdots \\ \vdots \\ \dot{\Xi} \end{gathered}$ |  |  | \% | $\begin{aligned} & \text { HO } \\ & \text { - }- \\ & \dot{\text { E }} \end{aligned}$ |  | $\begin{array}{r} \text { Cl } \\ \text { - } \\ \text { - } \\ \text { 울 } \end{array}$ | \% | $\begin{aligned} & \text { S } \\ & \dot{\perp} \\ & \dot{\text { Oig }} \end{aligned}$ | \% |  | \% | $\begin{gathered} \text { EC } \\ \stackrel{\text { gi }}{\text { gi }} \end{gathered}$ |  | 증 |  |  |  |  |  | $\begin{aligned} & \text { İ } \\ & \text { ס } \\ & \text { © } \\ & \underset{N}{E} \end{aligned}$ |  | ¢ |  | $\underset{\text { ¢ }}{\substack{\text { I }}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| shallow | 20th | 7 | 39 | 6 | 15 | 2 | 18 | 3 | 4 | 9 | 24 | 19 | 15 | 0 | 0 | 126 | 28 | 3.9 | 28 |  | 0.015 | 0.070 | 0.110 | - | - | 0.62 | 0.00 | - |
|  | 50th | 18 | 53 | 7 | 27 | 4 | 23 | 34 | 38 | 16 | 29 | 36 | 44 | 0 | 0 | 218 | 34 | 5.8 | 38 |  | 0.075 | 0.700 | 0.200 | - | - | 1.35 | 0.00 | - |
|  | 80th | 32 | 61 | 12 | 38 | 7 | 26 | 56 | 51 | 37 | 46 | 53 | 68 | 1 | 1 | 320 | 58 | 7.2 | 48 |  | 0.107 | 6.640 | 0.209 | - |  | 1.80 | 0.00 |  |
| moderate | 20th | 21 | 60 | 6 | 3 | 4 | 7 | 35 | 24 | 23 | 42 | 11 | 3 | 0 | 1 | 196 | 29 | 6.2 | 29 | 27.0 | 0.055 | 0.192 | 0.000 | - | - | 1.44 | 0.00 |  |
|  | 50th | 80 | 75 | 6 | 9 | 8 | 16 | 62 | 45 | 105 | 46 | 17 | 7 | 3 | 3 | 570 | 47 | 7.0 | 52 | 27.0 | 0.100 | 1.200 | 0.290 | - | - | 4.50 | 2.18 | - |
|  | 80th | 188 | 89 | 9 | 20 | 9 | 21 | 297 | 52 | 144 | 61 | 31 | 14 | 17 | 3 | 1,002 | 59 | 8.2 | 244 | 27.0 | 0.190 | 2.100 | 0.580 | - | - | 11.88 | 4.36 | - |
| deep | 20th | 13 | 34 | 8 | 14 | 6 | 18 | 49 | 15 | 14 | 21 | 19 | 6 | 1 | 0 | 205 | 51 | 6.7 | 40 | 25.7 | 0.106 | 0.000 | 0.024 | - | - | 0.74 | 0.00 | - |
|  | 50th | 24 | 53 | 14 | 19 | 7 | 24 | 58 | 41 | 18 | 28 | 34 | 24 | 3 | 2 | 237 | 61 | 6.9 | 48 | 32.0 | 0.120 | 0.005 | 0.135 | - | - | 1.45 | 0.00 | - |
|  | 80th | 1,413 | 67 | 219 | 42 | 169 | 28 | 348 | 54 | 2,809 | 73 | 128 | 35 | 5 | 4 | 6,685 | 1,238 | 7.5 | 288 | 35.6 | 0.127 | 0.010 | 6.553 | - | - | 15.11 | 0.00 | - |

## Notes:

1. Refer to Plan WQ1083 to locate relevant groundwater chemistry zones.
2. Within each chemistry zone, groundwater quality values are provided for different depths (Shallow: <15m, Moderate: 15-40m, Deep: 40-65m, Very deep: $>65 \mathrm{~m}$, Artesian: all artesian).
3. The management intent is to maintain 20th, 50th and 80th percentile values. Values are provided for each of these percentiles.
4. Abbreviations: EC : Electrical conductivity, $\mathrm{CaCO}_{3}$ : Calcium carbonate, $\mathrm{Ca}:$ Calcium, Mg : Magnesium, Na : $\mathrm{Sodium}, \mathrm{Cl}: \mathrm{Chloride}, \mathrm{SO}_{4}$ : Sulfate, $\mathrm{HCO}_{3}$ : $\mathrm{Bicarbonate}, \mathrm{NO}_{3}$ : Nitrate, $\mathrm{SiO}_{2}$ : Silica, F: Fluoride, Fe: Iron, Mn: Manganese, Zn: Zinc, Cu: Copper, SAR: Sodium adsorption ratio, RAH: Residual alkali hazard, EH: Redox (oxidation/reduction) potential, '-': insufficient data to perform statistical summaries, or the parameter was not tested.
Source: Queensland Wet Tropics and Black and Ross catchments: Regional chemistry of the groundwater. Queensland Government (Raymond, M. A. A. and V. H. McNeil, 2013).

## Ways to improve water quality

## 4 Ways to improve water quality

The following documents are relevant in considering ways to improve water quality in the Barron River basin.

## Regional plans

- Wet Tropics Water Quality Improvement Plan, Terrain NRM 2015, in publication. See Terrain website.
Queensland and Australian Government plans
- Reef Water Quality Protection Plan 2013
- Reef 2050 Long-Term Sustainability Plan
- Reef Program-The Australian Government Reef Program will be delivered as a component of the National Landcare Program and will build on the success of the first phase of Reef Rescue. More about the Australian Government Reef Program


[^0]:    ${ }^{1}$ Queensland Drainage Division number and river basin names are published at Geoscience Australia's website www.ga.gov.au

[^1]:    ${ }^{2}$ The Australian Drinking Water Guidelines are available on the National Health and Medical Research Council website www.nhmrc.gov.au.
    ${ }^{3}$ The ANZECC guidelines are available on the Australian Government's National Water Quality Management Strategy website.

[^2]:    ${ }^{4}$ Beyond the jurisdictional limit of Queensland waters, mid-shelf marine waters extend from the limit of open coastal waters to 24 km offshore and offshore marine waters extend from the limit of mid-shelf waters to 170 km offshore. See GBRMPA guidelines.

[^3]:    ${ }^{5}$ The AWQG are available on the National Water Quality Management Strategy website.
    The ADWG are available on the NHMRC website.
    ${ }^{6}$ The Australia New Zealand Food Standards Code is available on the Food Standards Australia and New Zealand website.

[^4]:    ${ }^{7}$ Guidelines for Managing Risks in Recreational Water are available on the NHMRC website.

